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ABSTRACT 

Correlated treatment of chemical systems. FeCO"^ is an important chemical system 

because Fe"^ is a catalyst and CO has proven effective in modifying the reactivity of 

transition metals. FeCO"^. Fe"^ and CO were studied using several different ab initio 

methods: single-reference coupled-cluster techniques, multi-reference perturbation theory, 

and multi-reference configuration interaction. Although the ground state of Fe"^ is a sextet, 

upon interaction with the CO the ground state of FeCO"^ is found to be a quartet. This 

crossing of the quartet and sextet potential energy surfaces is used to explain the 

experimentally observed reactivity of Fe"^. Several complex problems are encountered in the 

analysis of the ground and excited state potential energy surfaces. They are discussed in 

detail including their causes and solutions. 

Density Functional TheoryiDFT). DFT is a method in which chemical properties 

are calculated directly from the electron density instead of the ab initio wavefunction. 

Integrating over the density usually is done using a numerical grid. A derivation of a grid-

free (DFT) approach is described in detail with an emphasis on numerical rigor and the 

practical details of implementation without the use of grids. Since atomic basis sets 

normally used in molecular orbital calculations are usually found to be inadequate, extensive 

research devoted to developing auxiliary basis sets is presented. Chemical systems are 

studied to compare this approach to the more traditional grid based approaches. The grid-

free approach is found to be an effective method of calculating energies and geometries, 

provided an adequate auxiliary basis set is used. 
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CHAPTER 1: INTRODUCTION 

I. Overview of topics 

lA. General overview 

Transition metals are a vital part of chemistry due to the extensive and varied 

reactivity resulting from their partially filled d orbitals. Fe"^, a (3d64sl) metal cation, has 

been studied extensively as a catalyst for many different reactions of interest. Fe"^ is 

generally not used as a catalyst alone, usually a complexed form is utilized. A good 

candidate for such complexes is FeCO"^, because CO is important in the chemistry of many 

transition metals, playing a role in many chemical processes and industrial procedures. In 

both the oxidative addition of to metals and the reductive elimination of Fi, from metals, 

CO is important because it is effective in stabilizing transition metals, even those which 

carry negative charges. FeCO"^ in particular has been studied as a catalyst for reactions 

involving polyhalogenated methane and halogens both in a microwave discharge and 

without microwaves. This makes FeCO"*" of particular interest given the role that halogens 

play in the atmospheric destruction of the ozone layer. Gas phase studies and theoretical 

calculations have shown that FeCO"^ has significantly different reactivity and selectivity than 

Fe"^ and other Fe"^ complexes such as Fe(H,0)j^'^. Armentrout and Tjelta found that 

FeCCO)"^ activates both C-C and C-H bonds in ethane, while Fe(H^O)"^ preferentially 

activates the C-H bonds. This can be partially explained by the observation that R groups 

must interact with the 3dCT orbital in FeCH^O)"^ instead of the empty 4s orbital in Fe(CO)"^. 

The 4s orbital in FeCO"^ is unoccupied in the quartet states, but occupied in the sextet states. 

Therefore the Fe"^ must undergo a conversion to quartet upon forming FeCO^. 

Unfortunately, calculations on such systems have been difficult, because transition metals 
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often have many low lying slates and computationally demanding approaches are usually 

necessary to produce accurate results. 

As alluded to above, chemists often find adding "correlation" to electronic structure 

calculations to be essential. The correlation energy is defined as the difference between the 

Hartree-Fock energy and the exact full configuration interaction (CI) energy in a complete 

one-electron basis. Correlation corrections are provided by all methods that are more 

accurate than a single-reference Hartree-Fock. This improved accuracy requires the use of 

more computer resources. The correlation energy can be obtained in a number of ways: 

perturbation or cluster expansions of the correction carried out to finite order, modified 

Hamiltonians as in Density Functional Theory (DPT), and variationally as in Configuration 

Interaction (CI) methods. DFT is advantageous because its computational requirements are 

relatively low. 

IB. FeCO+ 

At dissociation the lowest state of Fe"^ + CO is naturally the sextet, since the ground 

state for a Fe"^ ion is and CO is a 'S"^. Experimentally the FeCO"^ complex is known to 

be a quartet, so a state crossing must occur. Studying the low lying states of a transition 

metal complex such as FeCO"^ generally requires the use of a multi-configurational 

wavefunction. Occupation numbers for orbitals are often found to differ significantly from 

the single-reference values of 1.0, 2.0 and 0.0. The simultaneous existence of effects such 

as "sigma donation" and "pi backbonding" forces electrons that are nominally non-bonding 

to weakly interact. Such weak interactions are often a driving force for fractional natural 

orbital occupation numbers. If one does not use a multi-reference wavefunction in such 

systems, the underlying wavefunction will be incorrect and all results are suspect. Getting 
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the correct wavefunction for degenerate states can require state-averaging (SA). A pair of 

delta states will lose their symmetry if only one is optimized, whereas optimizing the pair of 

states yields occupation numbers of 1.5 and 1.5 for the degenerate delta orbitals. Some 

excited states might not converge, because the variational principle forces the wavefunction 

to collapse to a lower energy state. 

Additional correlation must be added to the FeCO"^ wavefunction in order to obtain 

quantitatively correct results. In this work, this is accomplished by using a perturbation 

expansion to calculate correlation energy. The multi-configuration quasi-degenerate 

perturbation theory to the second order (MC-QDPT2) method is used. This method 

assumes that the correlation energy is a small perturbation to the MCSCF energy and that 

the correlation energy is a property of the MCSCF wavefunction. MC-QDPT2 is able to 

properly treat states in which a single-reference wavefunction is not a close approximation 

to the exact wavefunction. It can also handle states that are degenerate or nearly degenerate. 

IC. Grid-free DPT 

Density Functional Theory (DFT) has been used for several decades. Recently, the 

advent of much tighter integration grids and much better gradient-corrected functionals has 

resulted in a surge in its utilization among chemists. DFT can provide electron correlation 

with a computational expense that is litde more than Hartree-Fock. This is achieved by 

changing the underlying Hamiltonian to one that has terms that depend directly on the 

electron density. The resulting integrals are so complicated that they must be evaluated 

using approximations. Traditionally, this has meant evaluating the integrals using a 

numerical grid. A grid-free approach to DFT that relies on basis set completeness rather 

than grid completeness has been developed and implemented and is reported in this thesis. 
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Whatever approach is used to evaluate the DFT integrals, it is important that a 

numerically stable and efficient approach be chosen. The grid-based methods have been 

shown to suffer from numerical instability. Just as a poorly designed grid can introduce 

problems, a poorly designed basis set can introduce problems. A significant portion of this 

research deals with the issue of designing an auxiliary basis set. An entire chapter is 

devoted to properly handling the density derivatives. Parts of several chapters are devoted 

to efficient integral computation and screening algorithms. 

Although single-point energies provide a great deal of useful information, in general 

one does not know a priori at what points to calculate energies. Gradients of the energy 

with respect to nuclear coordinates provide a useful insight, allowing one to search 

efficiently for a energy minima or saddle point, by minimizing the energy gradient with 

respect to nuclear position. Gradients have been implemented in a general method for the 

grid-free DFT approach. The gradients also rely on basis set completeness. 

I I .  T h e s i s  O r g a n i z a t i o n  

Chapters 2 through 5 are papers accepted, submitted to, or prepared for submission 

to peer reviewed journals with me as primary author. 

Chapter 2 presents initial results of the grid-free DFT approach without the use of 

auxiliary basis sets. A detailed derivation of the method is presented. The need for the use 

of auxiliary basis sets is shown. 

Chapter 3 presents research into properly treating the density gradient terms within 

the grid-free DFT approach. A numerically stable method is presented and compared to 

several unstable methods. 
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Chapter 4 presents further research into the grid-free DFT approach. Additional 

implementation details are presented with an emphasis on auxiliary basis sets. Results 

using auxiliary basis sets are presented. 

Chapter 5 provides an in depth study of the low lying states of FeCO"^. The need 

for electron correlation is shown, and results using correlated methods are presented. 

Chapter 6 is a general conclusion based on the research presented in chapters 2 

through 5. 

I I I .  T h e o r e t i c a l  B a c k g r o u n d  

IIIA. Quantum mechanics 

Quantum mechanics models the microscopic world using equations to describe the 

underlying physics and the wavefunction to describe the physical system. The ultimate 

goal of all quantum mechanical calculations is to achieve a solution for the time-dependent 

Schrodinger' equation: 

^r-^ = rtT(.v,r), (1) 
2ni ° ̂  

where h is Planck's constant, t is time, .v is position, ft = T + V(.v,r) is the Hamiltonian of 

the system of interest, and 4^ is the wavefunction for the system. T is the kinetic energy 

portion and V is the potential energy portion of the Hamiltonian. 4^4^ describes the 

probability of finding the object at any point in space. Therefore, even if has 

imaginary values, the probability will be real valued. All work presented within this thesis 

is based on 'F's that are real valued. Eq. (1) describes the basic underlying quantum 

physics of the problem. If the solution to Eq. (I) could be found for a given system (not 

necessarily molecular), then we would have a complete picture of the system, ft 
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interconnects all particles at all times, therefore the equations describing the 

interdependencies are too complicated to solve. Well-defined, systematic assumptions must 

be made in order to find solutions. With each of these subsequent approximations, the 

problem presented in Eq. (1) is simplified, but the quality of the answer 4^ suffers. 

The first approximation is to remove the time dependence from Eq. (1). This 

requires assuming that the potential V is independent of t. Therefore for most quantum 

chemistry calculations performed, the time-independent Schrodinger' equation is utilized: 

where E is the total energy of the system, A is the time-independent Hamiltonian, and 4^ 

describes both the electrons and nuclei. Eq. (2) is an eigenvalue problem with multiple 

solutions. For each eigenvalue Es, there is a corresponding eigenfunction The T with 

the lowest value of E is the ground state. Eq. (2) can only be solved exactly for a one or 

two body system, such as the hydrogen atom. For molecular systems, it is necessary to 

make a distinction between nuclei and electrons based on their different properties. 

The Bom-Oppenheimer^ approximation assumes that the nuclei move on a time 

scale much longer than that of electrons. Therefore it is a reasonable assumption that the 

nuclei are fixed in space when treating the electrons. The nuclear-nuclear interactions 

become a constant for a given geometry, and therefore only the Hamiltonian for the 

electrons must be solved (with nuclear repulsion merely acting as a fixed potential): 

where n is the number of electrons, N is the number of atoms, r^ is the distance between i 

and j, is the nuclear charge of atom A, and v ̂  is the laplacian for the electron. The 

rtH^(.r) = EH'(.r), (2) 

(3) 
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first term in the brackets is kinetic energy and the second term is the nuclear-electron 

attraction; both of these terms are relatively simple to evaluate. The third term of Eq. (3), 

which represents electron-electron repulsion, is a multi-body term, and therefore analytically 

solving the equations that result from applying this term to a 4^ is impossible for systems 

with more than one electron. All calculations presented within this thesis are performed 

within the time-independent Bom-Oppenheimer framework. 

The troublesome third term in Eq. (3) is simplified within the orbital approximation. 

The Hamiltonian is not approximated, but restrictions are put on the wavefunction that 

simplify the application of Eq. (3). Each electron is assumed to have a well-defmed spin 

orbital that defines its position in space. Each electron feels a space averaged repulsion 

from all of the other electrons. Therefore the n electron Hamiltonian can be replaced with n 

one-electron effective Hamiltonians (each of which can be solved exactly); 

= withj= 1 n, (4) 

where f is the Fock operator, e- is an orbital energy, and y/^ is a variationally optimized 

orbital. This method is called Hartree-Fock theory.^ 

The total wavefunction 4^ is required to be an antisymmetrized product of the spin-

orbitals, therefore interchanging any two electrons changes the overall sign: 

T(I,2)=-T(2,1). This requirement enforces the Pauli exclusion principle, which keeps 

two electrons from being in the same place at the same time. This is a form of correlation, 

but it only applies to the interaction between electrons with the same spin. The requirement 

is met by making 4^ a Slater determinant of thei/s: 
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H' = (n!)-' -
i^,(eO v/',(e,) ... 

(5) 

(//-.(Cn) i/^,(e„) i/A„(eJ 

instead of the much simpler Hartree product of the molecular spin orbitals: 

4 ^ = i / A ,  ( e , )  •  i i / A e . )  •  (6) 

where n is the number of electrons, Cj is the i'^ electron, and y/^ is the i'^ molecular spin 

orbital. The Slater determinant is often written compactly using the bra-ket notation: 

where all of the permutations of all of the electrons in all of the occupied molecular orbitals 

is implied. 

The Fock operator P depends upon the orbitals {i f / }  and the orbitals {(//•} are 

pseudo-eigenfunctions of P, therefore Eq. (4) must be solved in an iterative manner. An 

initial guess at {i^} must be made, and then the resulting F is used to generate an improved 

{ y/}. This improved { y/} is then used to generate a new P and the process continues until 

{ y/} and F do not change to some prescribed tolerance. This iterative process is called the 

self-consistent field (SCF) process. If the {y/} are allowed to be different for alpha and beta 

electrons, then this is called the unrestricted Hartree-Fock (UHF)"^ method. If the { y/} are 

the same for alpha and beta electrons then this is called the restricted Hartree-Fock (RHF)^ 

method for closed shell systems and the restricted open-shell Hartree-Fock (ROHF)*^ 

method for systems with different numbers of alpha and beta electrons. Spin is often not a 

well-defined quantum number within the UHF formalism, so although it does remove a 

restriction and thus lowers the energy, unrestricted wavefunctions have not been used 

T = |i/^i y/,y/, y/„}, W' = {y/^y/.y/, y/„ (7) 
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extensively within this thesis. 

Within this work, the { y/} are chosen to be linear combinations of atomic orbitals.^ 

Although there is nothing in the Hartree-Fock formalism to force this choice, it is a very 

convenient choice: 

i/A = y C y _ 

where C's are the LCAO (linear combination of atomic orbital) coefficients and the x's are 

atomic orbitals. Within this work, to allow fast evaluation of integrals over the orbitals, 

linear combinations of gaussian functions^ are utilized as the atomic basis: 
( m Ttx^ VT -<X{X' -t-ZT) 

X ^  =  x y z X N i e  ^  

where is a contraction coefficient, l,m,n are integers that provide angular momentum, 

and a is the exponent that determines the diffuseness of the gaussian. The contractions 

allow several gaussian functions to be combined to form a single atomic orbital. 

Hartree-Fock is size-consistent. In order for a method to be size-consistent, the 

energy for A + B at a very large distance must be the same as the sum of the energies for the 

two systems A and B. This does not mean that Hartree-Fock can properly treat the breaking 

of bonds, because breaking bonds would involve the unpairing of electrons. All Hartree-

Fock methods are invariant with respect to any transformation of the molecular orbitals that 

does not change the total electron density. The energy therefore depends only on the 

electron density and not the choice of molecular orbitals.^ 

Hartree-Fock is often inadequate for molecules such as FeCO"^. This failure is 

partially due to its inability to correlate electrons with opposite spin. This results in 

electron-electron repulsions that are too large. By adding correlation to the Hartree-Fock 

wavefunction these deficiencies can be overcome. 
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IIIB. Density functional theory (DFT) 

DFT is a method of calculating the correlation energy by replacing the underlying 

Hamiltonian ft with a modified that contains terms that are functions of the electron 

density.DET can be based on a converged Hartree-Fock density or on a density 

optimized using H . Because H is not the correct Hamiltonian, it is possible to get 

energies that are lower than the exact answer. Therefore, DFT is not truly variational. DET 

is often referred to as "semi-variational", because within the framework, energies are 

never lower than the correct answers. Like Hartree-Fock, DFT is orbitally invariant 

and size-consistent. Within this work, DFT is implemented as a single-reference method, 

where the density is required to be represented by a set of single-reference orbitals. 

inc. Configuration Interaction(CI) 

A full CI calculation will give the correct solution within the basis set used for Eq. 

(2) (ft is the Hamiltonian presented in Eq. (3)) Therefore in the limit of a complete basis 

set. a full CI gives the correct Bom-Oppenheimer energy. A full CI is generated by taking 

the optimum linear combination of all possible arrangements of electrons in the molecular 

orbitals. Because all combinations are used, the choice of zeroth-order wavefunction is 

irrelevant, but the Hartree-Fock is a convenient choice for 4*0 and used in Eq. (10). 
All single All double All triple 

excitations excitations excitations 

(10) 
full CI I 

) = c  H ' ) + y c ' ¥ ) + y c H ' ) + y c w  ) . . . ,  
/ 0.1 0/ Y '•'/ T -•'/ T 3.1 3.i/ 

Where {c^^ are the CI coefficients, and [.> is the k'^ possible way of exciting j 

electrons out of the occupied orbitals into the virtual orbitals. The CI coefficients 

provide weights of each (H'j |^> in the CI wavefunction, and are chosen to minimize the total 

energy. 
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The full CI calculation is computationally demanding. Therefore, the CI expansion 

is often truncated to single and double excitations (CISD)." CISD is not size-consistent 

because simultaneous double excitation in both A and B is a quadruple excitation on the A + 

B supermolecule. The energy of A + B would therefore be higher than the energy of A and 

B calculated separately. Although CISD works well for small molecules, larger molecules 

often require higher order excitations. 

Another approach is to do a full CI, but only for the "chemically important" or 

"active" orbitals. If both the orbitals and CI coefficients are optimized, then this method is 

called the Fully Optimized Reaction Space Multi-Configurational Self-Consistent Field 

(FORS-MCSCF)'- method. Mixing virtual, active, or core orbitals separately does not 

change the energy, therefore FORS-MCSCF is orbitally invariant. If the active orbitals are 

chosen properly, then the FORS-MCSCF can properly treat the breaking of bonds. The 

FORS-MCSCF method is size-consistent, although the active space on the A + B 

supermolecule must correspond to the active spaces on the separated A and B systems. 

HID. Coupled-Cluster (CC). 

CC methods'^ provide a way to approximate a full CI, but CC is not variational. 

CC approximates the exact wavefunction 4^ with an exponential operator acting on the zero-

order wavefunction (usually Hartree-Fock). 

l ' ) ' ™ >  =  = ' K o ) .  W h = r e t  =  t , + T , +  + t . .  ( 1 1 )  

n is the number of electrons and depends upon m-electron excitations. The exact form 

of t" will depend on how high of an order the expansion is carried out to. The complicated 

nature of t" makes this method computationally expensive, but efficient compared to a full 

CI provided that t" is truncated to a low order. All CC methods used in this work are 



www.manaraa.com

12 

derived to be orbitally invariant and size-consistent. Usually T consists of single and 

double replacements, together with some method of approximating the triples. 

HIE. Perturbation Theory. 

Another approach is to assume that the correlation energy is a perturbation to the 

zero-order wavefunction. The Hamiltonian is written as the zero-order Hamiltonian of Eq. 

(4) plus everything that was left out of the Hamiltonian in Eq. (3) to generate Eq. (4). 

= +  (12)  

For closed shell singlet Hartree-Fock the correction is: 

(13) 
i > i  i j  1  J  

where {J} are the coulomb integrals and {K} are the exchange integrals. A, , is 

expanded in a Taylor series and usually only the first two terms are used. For a converged 

Hartree-Fock wavefunction the first-order term vanishes although this is not always true for 

perturbations based on a converged SA-MCSCF wavefuction.'"^ '^ The underlying 

wavefunction must be close to the exact wavefunction for this expansion to be valid. This 

method is not variational. The perturbation methods used in this work are all size-

consistent. The multi-reference method used within this thesis is called Multi-

Configurational Quasi-Degenerate Perturbation Theory to the second-order (MC-QDPT2).'^ 

It can perturb multiple states simultaneously, including degenerate or nearly degenerate 

states. 

All these correlation methods have advantages and disadvantages. The choice of 

correlation method is determined by the available computer resources, the accuracy 

required, and the nature of the problem. In this work, the methods used are chosen to 

provide chemical accuracy for the problem at hand. 
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Kurt R. Glaesemann and Mark S. Gordon 

Abstract 

Density functional theory (DFT) has gained popularity, because it can frequently 

give accurate energies and geometries. Because evaluating DFT integrals fully analytically 

is usually impossible, most implementations use numerical quadrature over grid points, 

which can lead to numerical instabilities. To avoid these instabilities the Almlof-Zheng(AZ) 

grid-free approach was developed. This approach involves application of the resolution of 

the identity (RI) to evaluate the integrals. The focus of the current work is on the 

implementation of the AZ approach into the electronic structure code GAMESS, and on the 

convergence of the resolution of the identity with respect to basis set in the grid-free 

approach. Both single-point energies and gradients are calculated for a variety of 

functionals and molecules. Conventional atomic basis sets are found to be inadequate for 

fitting the RI, particularly for gradient corrected functionals. Further work on developing 

auxiliary basis set approaches is warranted. 

L Introduction. 

In recent years, density functional theory (DFT), formulated in terms of the spin 

densities (nj^,np) representing all electrons, has gained popularity as a method for 
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determining molecular properties and structures as an alternative to ab initio wavefunctions. 

Functional of the density have been fit to the uniform electron gas,' - and have 

incorporated corrections that depend upon the density gradient.^ "^-^ "Hybrid functionals" 

that mix in Hartree-Fock exchange can help correct for the inadequacies of a single-

reference wavefunction, although the meaning of terms such as single-reference and multi-

reference are not entirely clear for density functionals.^-^ Nonetheless, a multi-reference 

wavefunction is still necessary for some problems, e.g., to describe bond breaking, and to 

obtain the correct electronic spin and space symmetry.DFT can frequently give energies. 

relative energies and geometries more accurately than second-order perturbation theory, 

with significantly less computational expense."^ DFT can also give results in qualitative 

agreement with coupled cluster methods." although reports of failures of DFT are not 

uncommon in the literature,'- '^ '"^ partially because DFT is not strictly variational. 

Integrating the functionals over the spin densities to obtain energies would require a 

computational effort of order N"^ or higher, where N is the size of the atomic basis set. 

Because evaluating integrals over the functionals in a closed analytic form is usually 

impossible, most DFT implementations evaluate the integrals using numerical quadrature 

over a finite set of grid points: 

J  f ( n „ , n p ) d r  =  V  f ( n ^ , n p ) A f  d )  
Ail spacc Grid points 

These grids are usually organized in atom centered Lebedev spheres.'® '^-® Dunlap et. al. 

eloquently discussed how the use of grids can lead to numerical instabilities.-' -- Recently, 

grid-free approaches have been developed to avoid these difficulties.-

However, these analytic approaches involve their own approximations, and their 

convergence with respect to basis set has not been explored extensively. The primary focus 
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of the current work is on these basis set convergence properties of grid-free DFT. In 

section II the Almlof-Zheng (AZ) grid-free approach to DFT is discussed, with emphasis on 

its implementation into the electronic structure code GAMESS.-^ This will require 

calculating several types of integrals and doing several types of matrix manipulations. The 

derivation and implementation of analytic energy gradients are also discussed in this section. 

In section UI results based on the AZ approach are presented. Several prototypical systems 

are studied to explore the convergence of properties (geometries, dipole moments, singlet-

triplet splittings, isomerization energies) as a function of the basis set. These results will 

demonstrate in detail the basis set dependence of the grid-free approach. 

I I .  A Grid-Free approach to DFT. 

IIA. Single point energies. 

In this section the AZ approach of using matrix relations to evaluate the complicated 

DFT integrals is explained. Initially methods of simplifying the integrals using 

approximations will be examined. This will result eventually in exactly evaluating a four-

center integral and a gradient integral. The initial integral simplification uses the resolution 

of the identity(RI).-^ Consider the product of two arbitrary functions, f(x,y,z) and 

g(x,y,z). In matrix representation the resolution of the identity can be expressed as: 

Mo[f-g]=M,mM2[g], (2) 

where are matrix representations in terms of some atomic basis set (Xj }• In terms of 

individual elements of the matrices (and therefore integrals). 
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=  I J z , f e „ d f - j e ^ g x ^ d f  (3b) 

(3a) 

m 

= y M , [ f ]  M \ g ]  .  
^ 1 •- -"i.m 2 '-®-'m.j (3c) 
m 

The foregoing expressions are exact if {0^^} is a complete orthonormal set; otherwise, one 

expects some dependence of the calculations on the size of the basis set. Within GAMESS, 

the average of f*g and g*f is used, to preserve matrix symmetry . One well-defined choice 

for {9j^} is the set of orthonormal molecular orbitals from the current SCF cycle. This 

choice appears to maintain a proportionality between the accuracy of the resolution of the 

identity and the accuracy of the wavefunction (the RI basis set and the atomic orbital basis 

set are the same size). As will be shown in section in, this is unfortunately not the case. 

As an example of using the resolution of the identity, consider the DePristo-ICress 

gradient corrected exchange functional.-® which multiplies the uniform electron gas limit of 

n"^^ times a term that depends on the gradient of the density. After substituting the density 

matrix D for one factor of n in Eq. (4a) and applying the resolution of the identity in Eq. 

(4b), this functional simplifies to: 

Orthonormal 

- X v  d f  ( 4 b )  

(4a) 
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where, -t*, = fitted parameters 

y = v n  
•i. 3 

n  

f(n) in Eq. (3) =n i 

g(y) in Eq. (3) =y' 
I + b y" 

I • ' 

This leaves complicated integrals involving functions of the density n and the 

dimensionless density gradient y. Another resolution of the identity is used,-^ to evaluate 

these integrals, because they cannot be solved directly. This new resolution of the identity 

will rely upon the special properties of diagonalized matrices. 

This resolution of the identity will transform M[n] into M[f(n)] for an arbitrary 

function f. Any function of the density, f(n), may be represented in matrix form as follows. 

M[n] is transformed into a new matrix M'[n] using an orthonormal basis set. 

M ' [ n ] = V M [ n ] V  ( 5 )  

The matrix of LCAO coefficients is chosen for V, for which VSV = I, with S=overlap 

matrix in the atomic orbital basis set. M'[n] is then diagonalized by a unitary transformation 

U ,  y i e l d i n g  e i g e n v a l u e s  X.  

M ' [ n ] = U A U  ( 6 )  

The function f is then evaluated at the eigenvalues, and incorporated into M': 

M ' [ f ( n ) ]  =  U f ( A ) 0 .  ( 7 )  

Eq. (7) is exact in a complete basis (see appendix A). Finally, M'[n] is transformed back to 

the atomic basis, giving: 

M [ f ( n ) ]  =  ( V ) ' ' ( U f ( ? i )  0 )  ( V ) " '  =  S V U  f ( V )  O V S .  ( 8 )  

Therefore, once the matrix representation of the density is determined, the matrix 
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representation of any function of the density can be readily obtained. Similarly, this can be 

shown to be true for the matrix representations of y, n^^, or np. 

The matrix representation of the density M[n] is calculated from the tlrst-order 

density matrix D and atomic orbitals i, j, k and 1, by 

The four-center one-electron integrals (iklj)= J evaluated using a 

recursion formula similar to recursion formulae used by others^®-^' 

(a- 1 |bcd) + 5 X X X  %  d r = ( a b c d )  =  
a b e d  

a  A  + a  B  + a  C  + a  D  
a x  b x  w x  d x  O C A  

a  X  

a  + a  + a  + a  a b e d  

a (a-2 |bcd)-i-b (b-1 |acd) + c (c-l |abd) + d (d-1 |abc) 

2 a -i-a +a +a 
l a  b  c  d  

where a ,a .a ,a = Gaussian exponents 
a  b  > ;  d  

A ,B ,C .D = X positions of atoms with orbitals a, b. c and d 
X X X X 

a .b ,c .d = exponents of the x'',x',x', etc. part of the orbital 

(10) 

X X X X 

(fora=f orbital: a =2,a = l.a =0). 
x-y " > 

Here, the integral (b-l^|acd) is the integral (abed) with the x component of the angular 

momentum of orbital b decreased by one. Although the 4-center 1-electron integrals are 

unusual, they do appear in other contexts, such as the density based orbital localization 

method.^--^^ These one-electron integrals are analogous to the two-electron integral 

Jl)X|t( and are equivalent to the two-electron integral 

JX.(l)Xj.(n 5,, 5^|(2)5(.(2)df. The one-electron (i k 1 j) integrals formally scale 
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computationally as order N"^, as do the corresponding two-electron integrals. Screening, 

parallelization. vectorization, direct, and symmetry techniques used to reduce the N"^ 

dependence of the two-electron (i(l) k(l)|I/rp|l(2) j(2)) integrals^"^ are easily extended to the 

(i k I j) integrals. For example, (i k 1 j) integrals can be screened to avoid their evaluation by 

using the Schwarz inequalities. 

(iklj) < J (iikkXlIjj) (lla) 

(iklj) < j(iill)(kkjj) (lib) 

(iklj) < j(iijj)(kkll) (11c) 

Evaluation of the set of one-electron integrals takes less time than the set of two-electron 

integrals, because the index symmetries ((i k 1 j)=(i 1 k j)=...) allow fewer unique integrals 

to be computed. Note, however, that the dominant time bottleneck is the number of indices, 

not whether the integral involves one or two electrons. The notion that one-electron 

integrals are significantly faster than two-electron integrals is historical, since usually one-

electron integrals are of the type (i fi j), where fi=one electron part of Hamiltonian operator. 

In the work of Almlof and Zheng, these four-center one-electron integrals were 

approximated with three-center one-electron integrals, whose number grows as order N^, 

using the resolution of the identity: 

(Udj).i;(ik9.)(e.ij). (12) 

This application of the resolution of the identity is computationally equivalent to expanding 

the density n in the {9^^^} basis and then calculating M[n] (see appendix B). This would 

result in a computational savings by reducing the number of integrals that have to be 

computed. In this work, (i j k 1) integrals are evaluated directly, although an option to use 
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the three-center integral approximation has been implemented in GAMESS. Although the 

integrals scale as order the matrix multiplications and diagonalizations in the AZ grid-

free approach scale as order N^. 

The more popular DFT functionals involve terms that depend upon the gradient of 

the density. Integrals over | v n( • n""* ^ are computed as follows. 

(n"^  ' ^ )Xv<Jr=  ' i )x ,d r  

+ JXn(3n"' (13a) 

= -3jx^i(n •xjdf+3jx^,n'' (13b) 

Onhonormal 

= 3 V - { Jx^,^0„,dr -Je^n"' 'Xvdr 
m 

+  ' e ^ d r - ( 1 3 c )  
Onhonormal 

= -3  I  {  Jx^  i0„ , c f r  - Je^n" '  
m 

+ IXvTr0mtff j0^n*' } (13d) 

The last step follows, because d/dx is anti-hermitian and n"'^^ is hermitian. The J X.'iirXjdr 

are dipole velocity integrals. The d/dy and d/dz contributions are calculated similarly. We 

only study the gradient of the energy, because no popular functional uses higher order 

derivatives, due to numerical stability problems.^^-^^ 

In order to calculate energies, the wavefunction must be optimized using a self-

consistent-Field (SCF) method. This requires calculating Fock matrix elements, which are 

the derivatives of the energy with respect to changing the orbitals. The contribution of 

functional f (n^^, np, Vn^, Vnp) to the alpha Fock matrix is computed from the spin 

densities (n^^.np), and atomic orbitals 
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pDFT.a _ J* ( ^ , df ^ , d'f 
'] 

O J  i  . o f  .  ,  d - f  
U,X, +3-^v(x.xJ+3-^v-(x,X, + 

d n  '  d v n  '  d v n  '  
dr (14a) 

A more easily coded, but less transparent formulation for the first two terms is 10 

F°"'' = / ^'5C.X.) + 
5/ 

-^r vn +^r vn 
d ( v n  - v n  |  *  d ( v n  " v n j  "  

dr. (I4b) 

It is important to note that (unlike traditional Hartree-Fock) the dot product of with the 

density matrix does not give the DFT energy contribution; the DET contribution to the 

energy must be explicitly calculated. For example, the dot product of the X-a Fock matrix 

with the density matrix would overestimate exchange by 1/3 (see appendix C). 

IIB. Analytic Nuclear Gradients of the Energy. 

Chemists usually not only want the energy for a single arbitrary geometry, but the 

geometry at a stationary point on the potential energy surface as well. To efficiently search 

for these geometries, the derivative of the energy with respect to nuclear coordinates is 

needed. Although many DFT codes calculate these nuclear gradients, the potential energy 

surfaces sometimes suffer from grid noise.-Because the grid moves with the atoms, 

derivatives with respect to the grid are needed, but many DET codes neglect these 

terms.Such irregularities make determining saddle points and energy minima 

difficult. Methods for eliminating these effects have been developed.""^ "^' However, the 

corrections can introduce numerical difficulties of their own, and therefore other research 

groups now advocate relying on tighter grids to eliminate these problems."^ 

The grid-free DFT approach can be extended to the computation of gradients as 

follows . The Hartree-Fock formalism for the derivative with respect to nuclear coordinate 

for restricted closed shell non-complex wavefunctions is: 
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9 E _ /vj/ ( 0 H 

ax ax 
A  

OCC 

+ (v / | (  V +  T  +  J -K  l -E j \ j / ^^ ,  (16) 

^ ay 
where\i/ ' = yc [ 

I  I I  ^  

ax 
A  

and the other operators and symbols have their usual meaning: operators V^=nuclear-electron 

attraction, 'r=kinetic energy, J=Coulomb, R=exchange; x=atomic orbitals, H'=molecular 

wavefunction, \|;=spin-orbitals, and ei=orbital energy. The sum of Eq. (16) is over 

occupied spin-orbitals. Only the exchange term ^ in the resulting integral 

f f ax ̂
 Kx df, (17) 

ax 

must be modified to calculate DFT gradients. R is replaced with the DFT e.xchange-

correlation term If atomic orbital is not on atom A, then the derivative is zero, 

because x^ has no dependence on the position of atom A. If Xr is centered on atom A, then 

the nuclear coordinate X^ is replaced by the negative of the electronic coordinate x. This is 

because X j^ appears in the gaussian basis function Xr (x-X^). 

The resolution of the identity is then applied, giving 

J i " - '  a x ,  

Orthonormal j ( 

?  J s ,  J 9„clr- e„R°"x.dr- (19) 

Evaluation of both integrals in Eq. (19) is possible, because these are related to dipole 

velocity and the DFT contribution to the Fock matrix. It is important to realize that this 
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approach is independent of the functional chosen. Once the grid-free gradients are 

implemented, they are available for all functionals for which single point energies are 

available. The resolution of the identity in Eq. (19) can introduce problems, if the basis set 

{0j„} is inadequate. For example, the exchange-correlation contribution to a translation of 

the entire molecule in the x direction clearly must be zero: 

(20) 
occ r /atom 0^ f ( 9\1/ 

ST. = 41 J I dr =-4 V J ^ R-W, df = 0. 

With the application of the resolution of the identity, this becomes 

I I 3\1/ \ orthonormal | / All/ ( 

ST=-4I J |-55^Ji?:'"^v,dr=-4E £ J [-5^|e„dr • J 0„R°'^v,df(2i) 

which is not necessarily zero. This also applies to translations in the y and z directions, and 

to net rotations about the molecule's center of mass. These variances (which vanish in 

symmetric molecules), are projected out in GAMESS. This is done by summing all the 

contributions to a translation or torque and then subtracting it back out. This emphasizes the 

need for an adequate basis set {0^^} to ensure that the resolution of the identity has been 

sufficiently converged. These variances are also present in the grid-based approach, but are 

reported not to occur in the X-a specific approach of Werpetinski and Cook.-^ The sizes of 

the variances 5T^, 8Ty,6T^,5R^, 5R^,6R^ can be used as diagnostics for the adequacy of 

the basis set's capability to resolve the identity. 

lie. The Grid connection. 

Now that the implementation of the grid-free approach is clearly laid out, it is 

worthwhile to examine its relationship to the grid based approach. Careful analysis reveals 

that the grid based approach may be thought of as a special case of the grid-free approach. 
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Consider the generic integral Jx, fCn^) gCnp) An auxiliary basis set of non-

overlapping normalized step functions {0^^^} is used for the resolution of the identity. The 

resolution of the identity as in Eq. (3), which is exact in a complete basis {0^^^}, is applied, 

to give 

Jx, f(na) g(n3)X,cIr=V Jx, f(n J 0,„dr • J"0,„ gCn^) x,dr. (22) 
m 

The atomic orbitals {x} are assumed to vary insignificantly over an individual step function 

0^, therefore the atomic orbitals act like step functions in the region of Q^. This gives; 

Jz, f(na) gCrip) X,df=I^..„,j0n, fC^a) ^ , (23) 
m 

where is a grid-size weighted overlap. For a fine grid, this is the value of the orbital x, 

at the step function 0^^^ multiplied by the size of 0^^^. Now, the matrix function 

representation in Eq. (8), which is exact in a complete basis {0}, is used. Because 

M[f(nj^)] and M[g(np)] are diagonal in the 0 basis, U=I in Eq. (8), so 

Jx, f(nj g(np)x,df=l^..„,^,„, f(J0mn„ 0^dr) • g(j0^np 0,„dr). (24) 
m 

If the grid of step functions is very tight, then the step function is a single grid point. This 

gives the integral in terms of a grid: 

Jx, f(n^) •g(np) Xjtff= V ^ 4 f(n at grid point m) • g(n at grid point m). (25) 

This is the grid based approach to evaluation of the integrals that arise in DET. 

III. Grid-Free DFT Results 

IIIA. Functionals and methods 

The grid-free approach outlined in Sections n and in is used to implement several 

DFT functionals in GAMESS: 

I. Local exchange: X-a' which is exact in the limit of a uniform electron gas for 
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a=2/3. The more popular empirical value of a=0.7 is also available if no gradient 

correction to exchange is present. 

2. Local correlation; VWN5- '® and the PW local,"^^ which are designed to interpolate 

between the ferromagnetic limit and paramagnetic limit of the Ceperley and Alder^ Monte 

Carlo results. The PW local approach is a newer more accurate fit that is reported to give 

overall better energetics and structures than the VWN fits. 

3. Local exchange and correlation: three Wigner forms,"^^ "^^ "^^ "^^ which are designed 

to model exchange and correlation simultaneously. These are modifications of the simple, 

yet effective, equation: 

r C,n-" 
E,.= 5 rrdP' (26) 
" J l + C,n' ' 

which in the limit of C-,=0 is X-a. The Wigner form does not involve any terms that 

depend upon the spin-polarization ^=(nQ-np)/(nj^+np); therefore, the portion of correlation 

that results from a-3 interaction is not included. 

4. Gradient-corrected exchange: DePristo-Kress,-® BeckeSS"^^ and the CAMA"^^ and 

CAMB"^^ modifications to Becke88. These all multiply a local exchange term by functions 

of the dimensionless density gradient y = | v n| /n"* \ Becke88 is by far the most popular 

functional. 

5. Closed-shell gradient-corrected correlation: LYP^^-^® which is designed to 

reformulate the correlation formulas of Colle and Salvetti^' in terms of the electron density 

and the local kinetic energy density. This functional is not based upon adding a correction 

term to a local correlation functional. 

Naturally, combinations of these functionals, such as BVWN with Becke88 

exchange and VWN correlation are available to the user. Hybrid functionals such as mixing 
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half Hartree-Fock exchange and half Becke88 exchange are available also. 

All comparisons presented below are made to the grid based DFT code in Gaussian 

92/DFT^-. A pruned (75,302) grid of approximately 7000 points per atom^^ is used, 

because looser grids gave off-axis dipole components for NH3 and a net dipole moment for 

planar NH^. Both GAMESS and Gaussian92/DFT calculate all non-exchange/correlation 

terms explicitly from 4', rather than from n and the dimensionless gradient y; 

(27) 
vn 

4  ̂  
n 

E= J [C,.„,,,n' ' + + ' fiy 1] dr, where y = 

as was done in older purely DFT implementations. The current implementation of grid-free 

DFT in GAMESS does not use an auxiliary basis set, so the same basis that is used for the 

LCAO expansion is also used for the resolution of the identity. Consequently, as the basis 

set size is increased, both the accuracy of the wavefunction and the accuracy of the 

resolution of the identity are increased. Of course, use of an auxiliary basis set for the 

resolution of the identity would be more efficient and will be implemented in a subsequent 

version. 

IIIB. Energies of atoms 

Small closed shell atoms provide a good initial test case. Absolute energies for 

atoms are calculated using even tempered uncontracted basis sets.^"^-^^ He, Be and Ne are 

studied here. As can be seen in Tables 1 and 2, the Slater functional (X-a with a=2/3) 

energy converges with relatively small basis sets. Tables 3-5 show that gradient corrected 

functionals require basis functions of one higher angular momentum quantum number, 

because of the resolution of the identity introduced in Eq. (13d). When i and j are on the 

same atom, the integral f Xi vanishes if i and j do not differ by exactly one in x 

angular momentum. Even though s functions on Ne provide a gradient correction to the p 
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functions, the addition of d functions greatly enhances the accuracy of the calculation, by 

providing an additional gradient correction as can be seen clearly in Table 5. Although 

adding d functions to helium would make the basis set more complete (and therefore make 

the resolution of the identity more exact), it would not improve the accuracy of the 

calculation, unless the functional includes second derivatives of the density. This is because 

the second derivative of the density would involve J%, integrals and these vanish 

unless i and j have the same x angular momentum or differ by exacdy two in x angular 

momentum. 

inc. Energies and dipole moments of diatomics 

The bond distances, dipole moments, and binding energies for CO and N-, 

calculated with the B-null (Becke88 exchange, no correlation) functional using uncontracted 

even tempered basis sets^"*-^^ are given in Table 6. The isolated atoms are calculated using 

unrestricted wavefunctions. The basis sets used are 20sl3pl0d3f for N, 20sI3pl0dlf for 

C and 20sl3pl0dlf for O. The grid and grid-free results for both Nt and CO are very 

comparable, differing by only 0.001 A. Both approaches predict CO dipole moments that 

are within 2% of each other. B-null overestimates the Nt bond length compared to the 

experimental^^ value of 1.098A, and underestimates the experimentally predicted^^ 

binding energy of 9.90eV. This functional also overestimates the CO bond length 

compared to the experimental value of 1.128A,^^ and underestimates the experimentally 

predicted^® CO binding energy of 11.1 eV. The sign of the CO dipole moment is predicted 

correctly (difficult to do^^ ®^) and close to the experimental^'-^- value of 0.112 D. 
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HID. Energies and dipole moments 

Dipole moments and energies for R,0 and NH3 are examined with B-null using 

correlation consistent^^ basis sets in Table 7. The water geometry is fixed at 

R(OH)=0.9578IA, 0(HOH)= 104.4776°, and that of ammonia is fixed at R(NH)=1.012A , 

A(HNH)= 106.7°. As the basis set size increases, the dipole moments converge to the same 

answer. For the grid-free approach, a triple zeta basis set is necessary to adequately 

represent the resolution of the identity, based on the agreement of grid and grid-free 

approaches. A quadruple zeta basis for water and a pentuple zeta basis for ammonia is 

necessary to converge the dipole moment and energy. So, for these species, the resolution 

of the identity is converged with respect to basis set before the dipole moment is. Tliese 

dipole moments are within 0.04 D of the experimentally observed^- dipole moments of 1.85 

D for H^O and 1.47 D for NH3. 

HIE. The ammonia bend potential 

The bend potential of NH3 was studied initially with the B-null exchange functional 

and the 6-31 l-H-G(3d,3p) basis set.^ The N-H bond distance was constrained to the 

optimal X-a (a=2/3) value of 1.0496A to match the previous work by Werpetinski and 

Cook.-- Because the NH bond is optimized for the X-a functional, the gradient will never 

go to zero. The energy, net dipole moment, and root-mean-square (RMS) cartesian gradient 

at each point along the bend angle from 55° to 90° in 0.5° increments are presented in 

Figures 1-3, respectively. The dipole moments (Fig. 1) differ by no more than 0.116 D and 

5.95%. The grid-free and grid based energies (Fig. 2) differ by 0.0606 Hartree, but the 

shapes of the surfaces are very similar (the standard deviation of the energy difference 

between the curves is 0.00073 h). This suggests that for this size basis set the grid-free 
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approach gives reliable relative energies, even though the absolute energies are too high. 

The RMS gradient is significantly different (Fig 3); this is probably a result of errors 

introduced by the resolution of the identity, particularly applying it to derivatives in Eq. (13) 

and (19). Uncontracting the 6-311-H-G(3d,3p) basis set improves the fitting of the 

resolution of the identity, and therefore the quality of the grid-free results. To further 

explore these issues, the systematic correlation consistent basis sets of Dunning are 

utilized.^^ The energy for basis sets that fail to adequately resolve the identity can be too 

low (Fig. 4). Therefore, just as an inadequate grid can give non-variational and erratic 

energies and properties, an inadequate basis set to represent the resolution of the identity can 

suffer from the same problem. Grid-free results for all but the cc-QZVP basis set give 

incorrectly shaped RMS gradient curves (Fig. 5). To further explore the resolution of the 

identity, the cc-TZVP basis set is systematically uncontracted (Fig. 6 and 7), because cc-

TZVP gave the worst RMS gradient curves. By uncontracting the valence p shell on the 

nitrogen the resolution of the identities in Eq. (13) and (19) are more correctly represented. 

By further uncontracting the s shell on the hydrogen the resolution of the identity is better fit 

and the curves become more reasonable, although the minimum RMS gradient is 

mispositioned by five degrees. 

IIIF. Electronic states of triatomics 

The 'Aj and ̂ Bj states of are compared in Table 8 for both B-VWN5 and 

Hartree-Fock using an aug-cc-pVTZ^^ basis set. The ^B, state is optimized with a restricted 

open shell wavefunction. Table 8 shows that a basis set that is well designed for modelling 

occupied molecular orbitals, is not necessarily well designed to converge the resolution of 

the identity. For CH,, the aug-cc-pVTZ basis set is too contracted to adequately represent 



www.manaraa.com

32 

the resolution of the identity. Uncontracting the s functions and then the p functions results 

in more sensible predicted properties. Additional sets of polarization functions (one set of 

more diffuse d's and one set of tighter d's on C and one set of more diffuse p's and one set 

of tighter p's on H), improves the resolution of the identity in Eq. (13) and (19). Results 

for the quadruple zeta basis set show a similar trend, with the additional polarization 

functions agreeing with the grid-based approach. Unlike Hartree-Fock, the B-VWN5 

results agree with the experimentally observed splitting of 0.369-0.390eV (8.5-9.0 

kcal/mol)^^, and the experimental geometries^^ of 1.11 A, 102° for 'A, and 1.07A, 134° for 

'B,. 

IIIG. Isomers of polyatomics 

The geometries and energies of cyclopropane and propene^® are compared in Table 

9 using both Hartree-Fock and B-VWN5 with a 6-3Il-H-G(3d,3p) basis set^. Although 

the grid-free approach gives reasonable geometries, it badly underestimates the energy 

difference. By uncontracting the basis set, and thus increasing the accuracy of the 

resolution of the identity, the grid-free approach, gives reasonable geometries and energy 

differences. The experimental AH,gg is about 1.7 eV, with zero point energy (ZPE) 

corrections predicted to be significant.^ While direct comparison with experimental values 

is not entirely appropriate, both the grid based and the grid-free results appear to be poor. 

IV. Conclusions 

The grid-free approach to DFT provides an alternative to the grid based approach to 

DFT. The resolution of the identity^' (especially for gradient corrected functionals and 

energy gradient calculations) requires a more accurate basis set than does the wavefunction. 
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The use of such large basis sets results in the calculation of a large number of two-electron 

integrals that are not otherwise needed. A more efficient approach will be to augment the 

atomic basis set with auxiliary functions only during the DFT part of the calculation. The 

vast knowledge base available for dealing with wavefiinction basis set completeness in 

DET'° appears to be inadequate for addressing this issue, particularly for gradient corrected 

functionals. Previous work on auxiliary basis sets have dealt with the fitting of the n^^^ X-

a potential^' or the Coulomb potential.^- Little or no work has been done on fitting the 

gradient of the density as in Eq. (13) or fitting the resolution of the identity between the 

alpha density and the beta density as in Eq. (15). 

APPENDIX A. PROOF OF EQUATION 7 

NI[f(n)] is in an onhonormal basis in which rvl[n] is diagonal (i.e. [n] = A.) 

r^[f(n)] = M , series expansion of the function 

= Za„Sl[n'"] 
m 

- E (M[n] )'",by the resolution of the identity (exact in complete basis) 
m 

= ̂  since M[n] is diagonal 
m 

I^[f(n)]=f(X) 

This should not be confused with the commonly used relationship, which is true in any basis: 

f(M[n]) = f(>.) 

APPENDIX B. APPROXIMATE THREE-CENTER APPROACH 

Expand the density in an orthonormal basis set: 
• K 

M[n] = M X C 0 
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M[n]  =  Jx .  I  C 0  X (S. 
I.J I . m m i ' m= 1 * 

Because {0} is orthonormal, the expansion coefficients are given by, 

C™=Jn-0„dr .  

A O  

r .s  

Substituted into M[n]j j gives: 
K /AO 

M[n] . ,=  Jx .  I  lDr . s /X .Zs0mdr  
K /AO 

0 7 dr. 
m= 1 r.s 

which rearranges to give: 
A O  K  

M[n] , j  =  X X D, ,  Jx .X ,e„df  - j0„ ,XrX,dr .  
r,s m= I 

Which is equivalent to just applying the resolution of the identity. 

APPENDIX C. X-A FUNCTIONAL ENERGY 

For the closed shell X-a functional f, with molecular orbitals i|/. 

^u.v°"=J>uVv-^dr 

u.v a  3 J  T ^  T V 

Forming the dot product of the DFT fock matrix with the diagonal density matrix yields: 
occupied 

8:°".D= I 2C„TJW„N"DR 
u 

This is not the DFT energy. 
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Table 1: He energies in Hartrees with the Slater exchange functional 

Basis Set Hartree-Fock Grid Grid-Free 

"Ss -2.858589 -2.719253 -2.722985 

10s -2.861647 -2.723547 -2.723952 

15s -2.861679 -2.723630 -2.723731 

20s -2.861680 -2.723638 -2.723674 

Table 2: Be energies in Hartrees with the Slater exchange functional 

Basis Set Hartree-Fock Grid Grid-Free 

5s -14.479361 -14.131597 -14.156690 

10s -14.571727 -14.221960 -14.224846 

15s -14.572985 -14.223236 -14.223890 

20s -14.573021 -14.223284 -14.223487 

25s -14.573023 -14.223289 -14.223369 



www.manaraa.com

Table 3: He energies in Haiirees with ihe Becke88 exchange functional 

Basis Grid Grid-Free Grid-Free Grid-Free Grid-Free Grid-Free Grid-Free 

Set (+lp) (+3p) (+-''P) (+10p) (+15p) (+20p) 

5s -2.859231 -2.801225 -2.845034 -2.857012 

10s -2.863302 -2.797241 -2.848139 -2.860223 -2.863275 

15s -2.863373 -2.796592 -2.846943 -2.860447 -2.862979 -2.863351 

20s -2.863378 -2.796338 -2.846451 -2.858871 -2.862903 -2.863271 -2.863366 

Table 4: Be energies in Hartrees with the Becke88 exchange fimciional. 

Basis Grid Grid-Free Grid-Free Grid-Free Grid-Free Grid-Free Grid-Free Grid-Free 

set (+lp) (+3p) (-i-5p) (+10p) (+I5p) (+20p) (+25p) 

"ios -14.564943 -14.415043 -14.500901 -14.541349 -14.565649 

I5s -14.566296 -14.417206 -14.502231 -14.540217 -14.564638 -14.566347 

20s -14.566353 -14.415954 -14.502004 -14.538576 -14.564523 -14.565936 -14.566589 

25s -14.566362 -14.414982 -14.501644 -14.537827 -14.564432 -14.565804 -14.566240 -14.566420 
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Table 5: Neon energies in Hartrees with the Becke88 exchange funclional. 

Basis set Grid Grid-Free Grid-Free Grid-Free Grid-Free Grid-Free 

(+0d) (+ld) (+3d) (+5d) (-i-lOd) 

lOslOp -128.580485 -128.337180 -128.424312 -128.538924 -128.578138 -128.584228 

15slOp -128.589469 -128.351221 -128.436205 -128.548799 -128.582479 -128.588480 

15sl5p -128.589771 -128.352051 -128.438204 -128.549564 -128.583082 -128.589235 

20s1Op -128.589749 -128.353294 -128.438981 -128.549593 -128.582621 -128.588607 

20s15p -128.590051 -128.354483 -128.440131 -128.550023 -128.583751 -128.589404 

20s20p -128.590069 -128.354434 -128.440120 -128.548917 -128.583121 -128.589297 

25s1Op -128.589767 -128.354170 -128.440521 -128.549615 -128.582726 -128.588583 

25s15p -128.590069 -128.355356 -128.441362 -128.550457 -128.583821 -128.589407 

25s20p -128.590087 -128.355502 -128.441220 -128.548636 -128.583303 -128.589306 

25s25p -128.590090 -128.355500 -128.441166 -128.548669 -128.583157 -128.589280 
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Table 6; CO and N2 results with the BeckeSS functional 

Atomic and Molecular Energies (Hailree) Grid 

C -37.69044 

O -74.S3315 

CO -112.87314 

N -.^4.40088 

N, -109.08620 

Binding Energies (eV) 

N2 7.68 

CO 9.51 

Bond Lengths (A) 

CO 1.147 

N ,  l . i l 3  

Dipole Moments (Debye) 

CO 0.1655 

Grid-Free 

-37.68825 

-74.82951 

112.87204 

-54.40026 

109.08526 

7.75 

9.64 

1.148 

1.113 

0.1621 
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Table 7: NH3 and H2O dipole moments with the Becke88 functional 

H^O grid-free H^O grid dipole NH^ grid-free NH, grid 

cc-VDZ 1.6675 D 1.8016 D 1.3818 D 1.5027 D 

cc-VTZ 1.8415 D 1.8379 D 1.4935 D 1.5084 D 

cc-VQZ 1.8057 D 1.8086 D 1.4912 D 1.4832 D 

cc-VPZ 1.8140 D 1.8099 D 1.4690 D 1.4661 D 
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Table 8: CH2 gcomeliy optimizations with B-VWN5 functional 

Singlet energy 
(hartree) 

Singlet bond 
dislance(A) 

Singlet 
HCH Angle 

Triplet energy 
(hailree) 

Triplet bond 
distance(A) 

Triplet HCH 
Angle 

Splitting 
(eV) 

aug-cc-pVTZ Basis 

Hartree-Fock -38.89271 1.096 103.6° -38.93268 1.070 129.5° -1.09 

Grid -39.37803 1.115 101.0° -39.39197 1.079 134.0° -0.38 

Grid-Free -39.4504.5 1.411 60.5° -39.45521 1.253 82.3° -0.13 

Uncontracted S 

Grid -39.37888 1.115 101.0° -39.39271 1.079 133.9° -0.38 

Grid-Free -39.23749 1.134 93.8° -39.26604 1.079 136.6° -0.78 

Uncontracted 

Grid -39.37895 1.115 101.0° -39.39276 1.079 133.9° -0.38 

Grid-Free -39.34417 1.121 98.8° -39.35817 1.081 134.6° -0.38 

+2 more polarization 

Grid -39.38012 1.114 101.2° -39.39319 1.079 134.0° -0.36 

Grid-Free -39.35578 1.119 100.0° -39.36999 1.080 135.3° -0.39 

aug-cc-pVQZ Basis 

Grid -39.38232 1.113 101.4° -39.39567 1.079 134.0° -0.36 

Grid-Free -39.31940 1.111 102.7° -39.33494 1.079 134.2° -0.42 

Uncontracted 

Grid -39.38243 1.113 101.4° -39.39577 1.079 134.1° -0.36 

Grid-Free -39.36437 1.122 98.7° -39.37746 1.081 132.5° -0.36 

+2 more polarization 

Grid-Free -39.37065 1.115 101.r -39.38426 1.079 133.8° -0.37 
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Table 9; geomcli-y oplimizalions with B-VWN5 funclional 

Propene Propene C=C Propene Cyclopropane Cyclopropane Cyclopropane Energy 

energy bond distance C-C bond energy C-C bond H-C bond Difference 

(hartree) (A) distance (A) (hailree) distance (A) distance (A) (cV) 

Hartree-Fock -117.108688 rTlT TTTI -117.096518 ^98 LOTS -0.33 

Grid -118.604631 1.338 1.524 -118.588178 1.521 1.083 -0.45 

Grid-Free -118.457918 1.328 1.544 -118.456606 1.544 1.084 -0.04 

Uncontracted 

Grid -118.607912 1.339 1.524 -118.591789 1.520 1.083 -0.44 

Grid-Free -118.540559 1.339 1.526 -118.523173 1.525 1.088 -0.47 
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Figure 6: NH3 Energy with the Becke88 functional and coirelation consistent basis sets 
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CHAPTER 3: EVALUATION OF GRADIENT CORRECTIONS 

IN GRID-FREE DENSITY FUNCTIONAL THEORY 

A paper submitted to the Journal of Chemical Physics 

Kurt R. Glaesemann and Mark S. Gordon 

Abstract 

The Almlof-Zheng approach to grid-free density functional theory (DFT) uses the 

resolution of the identity (RI) instead of a finite grid to evaluate the integrals. Application of 

the RI can lead to stability problems, particularly when gradients are involved. The focus of 

the current work is on choosing a stable method of evaluating the gradient correction using 

the RI. A stable method is compared to several unstable methods. 

[. Introduction. 

In recent years, density functional theory (DFT), formulated in terms of the spin 

densities (n^, np), has gained popularity as an alternative to ab initio wavefunctions for 

determining molecular properties and structures. Functionals were originally fit to the 

uniform electron gas,' - but accurate energetics usually require density gradient 

terms.^ "^-^-^-^-^ Integrals over density functionals are generally complicated; therefore, the 

standard procedure is to evaluate the integrals using a numerical grid: 
Grid points 

J f(n„,np, vn„, vnp)dr = ^ f(n„(i),np(i), vn„(i), vnp(i)) A r (i). (i) 
All space i 

One grid-free approach has been developed as an alternative to the standard 

grid-based approach specifically for the uniform electron gas-based X-a exchange 

functional.^-Other functionals require the more general approach proposed by Almlof 
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and Zheng Both grid-free approaches involve approximations of their 

own. The AZ grid-free approach is based on the resolution of the identity The 

primary focus of the current work is on properly treating density gradient terms within the 

AZ approach. In Section II the AZ approach is discussed; the resulting derivations 

demonstrate the need for careful application of the RJ. 

II. A Grid-Free approach to gradient corrected DFT. 

The initial integral simplification uses the RI. Consider the product of two arbitrary 

functions, f and g. The RI can be utilized as follows, with {%} being an arbitrary basis set 

and {6 } being a set of orthonormal functions: 

The foregoing expression is exact only if {0^^} completely spans the f"g function space 

(which is often smaller than a complete basis).One should therefore expect 

dependence of the calculation on the size of the basis set; the molecular orbitals are 

usually an inadequate basis.The functions f and g must also be "well-behaved" in 

order for the decomposition in Eq. (2) to be reliable. A well-behaved function is single-

valued and defined in the entire relevant space. The relevant space of functions of n is {0 

... oo}, and of functions of the spin polarization ^=(nj^-np)/(nj^+np) is {-I ... 1}. For 

example, consider decomposing the well-behaved function f*g=l into f=x--l and the 

poorly behaved g=I/(x--l). f=x--I is smooth and defined over all space. For g=l/(x--i), 

the limit as x approaches -i-I is •» from the left and -<» from the right. Another example of a 

poorly behaved function is h=sin(l/n), because h oscillates wildly as n approaches zero. 

(2) 
m 
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Application of the RI in Eq. (2) to DFT integrals will leave integrals involving 

functions of the spin-densities and the density gradient. The "spectral" resolution of the 

identity is used,'^ to evaluate these integrals. This method (see Eq. (3) below) assumes that 

the matrix of integrals over the density has been transformed to an orthonormal basis set in 

which this matrix is diagonal. No generality is lost, since this is just a basis transformation. 

The function of the integral is assumed to be the integral of the function: 

J af(n)adf = f(je,na df)=f(x,)s, (3) 

where Aj is an eigenvalue of the matrix M[n]ij = J 0 j n 9. dr. Eq. (3) is exact in a complete 

basis, provided f is well-behaved.'^ In DFT, n is the density, although Eq. (3) does not 

assume this. Therefore, once the integrals over n are determined, the integrals over any 

well-behaved function of n can be readily obtained. 

The more popular DFT functionals involve terms that depend upon the gradient of 

the density, to allow for "non-local" effects. The 1988 exchange functional of Becker® 

[B88X]=n-^^^ , ^ , c, = 0.0042, (4) 
1 + 6 - c, y smh y 

like many functionals, is a function of the dimensionless density gradient y=|Vn|/n'^ or 

y-=(Vn)-/n^'^. 

There are many different ways to apply Eq. (2) and (3) to calculate the gradient 

corrections. The AZ papers suggest two approaches to calculating Vn and n~^ separately, 

then combining the results using Eq. (2). The first paper'^ suggested using the commutator 

relationship (Vn)-=[[n,V-],n] to calculate y-, and the second paper'*^ suggested using the 

commutator relationship Vn=[V,n] to calculate y. Implementing these approaches causes 

numerical stability problems.-' Although the Vn terms are calculated properly, the resulting 
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y terms are not numerically stable. For example, the expectation value <n~^> is infinite 

for the exact hydrogen wavefunction.-- Thus, the condition that f is well-behaved in Eq. 

(3) is not met for There are reports in the literature of stability problems while 

evaluating the derivative this way.^- Therefore, within the AZ method, the Vn and n'^ 

terms need to be calculated together as either y or y-. 

The first choice might be to directly evaluate y-=(Vn/n"^)-. because y- and not y is 

the dimensionless gradient originally proposed.-^ This is similar to the approach taken in 

the first paper by AZ and that proposed by others.-- The EU presented in Eq. (2) is used in 

Eq. (5c). 

^4" =9[[n'' \ v'],n'"^] (5a) 
n'*'^ 

f x  f ^ r x d r = 9 r x  ( 2 n - ' ^ v ^ n - ' ^ - v ^ n - ' ' ^ - n - ' ^ ' ) X  d r  ( 5 b )  
. n 

Orthonormal 

E  ( f x  2 n ' ' ^ 0  d f -  f o  v ' 0  d r -  [ 0  n " '  ^ x  d ?  ( 5 c )  m ^ ' m  n « ' n  v  
in.n 

- fx v ' 0  d r -  f0 n*'^x ^  ^ H m m V 

The derivation can be conveniently completed in the orthonormal basis set in which n is 

diagonal. Since this is only a basis transformation, no generality is lost, provide that (xl 

a n d  { 0 }  s p a n  t h e  s a m e  s p a c e .  T h i s  m u s t  b e  t h e  c a s e  i n  o r d e r  f o r  J x ^ n ' "  ̂ 0 ^ d r  t o  b e  

e v a l u a t e d  u s i n g  t h e  R I  p r e s e n t e d  i n  E q .  ( 3 ) .  T h e  e i g e n v a l u e s  o f  t h e  m a t r i x  o f  J x ^  n  X v ^ f f  

that appear in Eq. (3) are denoted Eq. (5c) simplifies greatly, since integrals of the type 

are evaluated using the and many indices collapse due to the Kronecker-5 

in Eq. (3). Eq. (5c) becomes: 
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h vn 'x^dr=9{2A.^-"^ -

=  - 9 ( ; L  - ' ^ - X  - ' ^ ' ) - - J x  v - x ^ d r .  

(6a) 

(6b) 

Clearly, Jxu 
vn 
.4, 3 Xu<^= 0 for all u after this application of the EU. Therefore, the sum 

of all the eigenvalues of this representation of (Vn/n"*^)- is zero, since a unitary 

transformation will change the diagonal elements but not their sum. But (Vn/n*^^)- is 

certainly positive definite, so all of its eigenvalues must be positive, even though this is 

clearly not the case after applying the RI in Eq. (5c). Thus, this application of the RI is 

flawed and produces an inconsistent result, because increasing the size of the basis set will 

not converge to the correct value. In other words, the condition that f and g be 

well-behaved in Eq. (2) is not satisfied as applied in Eq. (5c). 

Therefore, the density gradient in GAMESS-"^ is evaluated using y=|Vn|/n'^ rather 

than y-=(Vn/n"'^^)-. The commutator relationship used is similar to that proposed in the 

second paper by AZ. The RI presented in Eq. (2) is used in Eq. (7c). 
vn 

J: 
vn 

=  3  [ n ' '  v ]  

X v d r = 3 j x ^ ( n ' ' ^ v - v n " " M X v d r  

Orthonormal 

=  3  I  J e ^ v X v d r  
m 

-  J x ^ ^ 0 ™ d r  •  J e ^ n " " ' X v < i r }  

(7a) 

(7b) 

(7c) 

As in Eq. (5), choosing the orthonormal basis set in which n is diagonal yields. 
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J x  f - ^ l x  c E r = 3 { X  J x  d r - J x  d r X  }  • '  M -  4 / 3  V  ^  • '  j i  v  V  '  
I n / 

=  3 i X  ~ " ^ - X  ' •  M - J x  d r .  

(8a) 

(8b) 

vn 
4 / 3  Xvd? all being zero, but note that Eq. (8b) results in the diagonal values of Jxn 

Vn/n"^ and not the positive definite quantity y=|Vn|/n"^^ has been calculated in Eq. (7) and 

(8). The RI presented in Eq. (2) is used to generate integrals over y- with all positive 

eigenvalues. 

Jx 
vn 

X . d f = Z j  
m V n 

vn 
. d r - J x  —TT IXvdr 

n 
(9) 

This matches the proper physics of the system. Although a large basis set is needed for this 

RI to be accurate, this RI does converge with an adequate auxiliary basis set.'^ This 

method involves integrals over n"'^, which is well-behaved with <n~'^^>=4.943 for the 

exact hydrogen wavefunction.-- This method was successfully used previously,'^ and it is 

proving useful in additional cases.It is therefore recommended for implementations of 

the AZ grid-free approach to DPT. 
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CHAPTER 4; FURTHER INVESTIGATION OF A GRID-FREE 

DENSITY FUNCTIONAL THEORY (DFT) APPROACH 

A paper prepared for submission to the Journal of Chemical Physics 

Kurt R. Glaesemann and Mark S. Gordon 

Abstract 

Density functional theory (DFT) has gained popularity because it can frequently give 

accurate energies and geometries. The evaluation of DFT integrals in a fully analytically 

manner is generally impossible, thus most implementations use numerical quadrature over 

grid points, which can lead to numerical instabilities. To avoid these particular instabilities, 

the grid-free approaches were developed. The approach in this work involves application of 

the resolution of the identity (RI) to evaluate the integrals. Of particular concern is the 

convergence of the RI with respect to basis set in the grid-free approach. Conventional 

atomic basis sets are inadequate for fitting the RI, particularly for gradient corrected 

functional (J. Chem. Phys. 108, 9959 (1998)). The focus of this work is on 

implementation of and selection of auxiliary basis sets. 

I. Introduction. 

In recent years, density functional theory (DFT), formulated in terms of the spin 

densities (n^^.np), has gained popularity as a method for determining molecular properties 

and structures as an alternative to ab initio wavefunctions. Functionals of the density have 

been fit to the uniform electron gas,' - and have incorporated corrections that depend upon 

the density gradient.^-"^-^ "Hybrid functionals" that mix in Hartree-Fock exchange are 

reported to help correct for the inadequacies of a single-reference wavefunction.^-^ DFT 
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can frequently give energies, relative energies and geometries more accurately than second-

order perturbation theory, with significantly less computational expense,^ although reports 

of failures of DFT are not uncommon in the literature.^ '®-'' 

Evaluating integrals over functions of the density in a closed analytic form is usually 

impossible, because the functional forms involve very complicated functions of the density. 

Most DFT implementations evaluate the integrals using numerical quadrature over a finite 

set of grid points often organized in atom centered Lebedev spheres: 
Grid points 

J  f ( n „ , n p ,  v n „ ,  v n p ) d r  =  £  f ( n „ ( i ) , n p ( i ) ,  v n „ ( i ) ,  v n p ( i ) )  A r (i). (1) 
AH space i 

Dunlap discussed how integrating over a finite grid can lead to numerical instabilities.'^ An 

X - a  s p e c i f i c  g r i d - f r e e  a p p r o a c h  w a s  d e v e l o p e d  t o  a v o i d  t h e s e  d i f f i c u l t i e s . R e c e n t l y ,  

a more general grid-free approach has been proposed by Almlof-Zheng (AZ)'®" and has 

been further developed by us and others.-® -These grid-free approaches involve 

approximations that introduce errors that can be systematically eliminated by increasing the 

basis set size, and are independent of the coordinate system chosen. 

The primary focus of the current work is on the basis set convergence properties of 

auxiliary basis sets within AZ grid-free DFT. The auxiliary basis sets are used to converge 

the resolution of the identity (RI).-^ Several prototypical systems are studied to explore the 

convergence of properties as a function of the basis set. These results will demonstrate in 

detail the basis set dependence of the grid-free approach. In the previous work convergence 

of the RI was approached by enlarging the atomic basis set. This was successful, but it 

made separating basis set convergence from RI convergence difficult and resulted in 

extensive use of computational resources, because expensive two-electron integrals grew 

with the basis set. Bemholdt and Harrison have recently considered auxiliary basis sets for 
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fitting RI-MP2.2'* 

II. A Grid-Free approach to DFT. 

The several approximations used within the grid-free approach implemented in 

GAMESS-^ are briefly reviewed here. The accuracy of these approximations will always 

be directly related to the completeness of the basis. The initial simplification will be to split 

portions that depend on functions of the density, such as n^^ ,np, Vn^^, and Vn^. This 

integral simplification uses the RI. The resolution of the identity is utilized as follows: 

The foregoing expression is exact if {0^^^} is a complete orthonormal set; otherwise, one 

expects some dependence of the calculation on the size of the basis set. One choice for 

{0^} is the set of molecular orbitals from the current SCF cycle. This choice is the simplest 

to implement, but inadequate.-®--"^ Calculating the spin-polarization ^=(n^-np)/(n^+np) 

requires using the RI in Eq. (2) to combine (n^+np)"' and (n^-n^) to form 

A second "spectral" RI must be used to evaluate the resulting complicated integrals 

involving functions of the density and the density gradient.-^ This method (see Eq. (3) 

below) assumes that the matrix of integrals over the density has been transformed to an 

orthonormal basis set in which this matrix is diagonal. No generality is lost, since this is 

just a basis transformation. The function of the integral is assumed to be the integral of the 

where is an eigenvalue of the matrix M[n]ij = 10 j n 0. dr. Eq. (3) is exact in a complete 

basis. In DFT, n is the density, although Eq. (3) does not assume this. Therefore, once the 

Sx,fsx, J X ;  d r .  (2) 
m 

function: 

(3) 
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integrals over n are determined, the integrals over any well-behaved function of n can be 

readily obtained, such as n"'^. 

The matrix representation of the density M[n] is calculated from the first-order 

density matrix D and atomic orbitals i, j, k and 1 without using the RI. 

M  [ n  ^  =  J Z j  NZJ d r = £  J X ,  Z, Z, XJ dr. (4) 

The density gradient is evaluated dimensionlessly using the commutator 

n " " ^  •  7 n  =  3  [ n " '  \  v ] ,  

J X n  [ - ^  X v C l f = 3 {  J x ^ n ' " ' v x , d r - J x ^ v ( n ' ' " x v ) c f f }  ( 5 a )  

OrthoDormal 

=  3  E  { J x ^ n " '  ' e ^ d r  - J e ^ v x . d r -  ( 5 b )  
m 

J x , v 0 „ d r - J e ^ n " '  ' x „ d r }  

Squaring the matrix of integrals using the EU in Eq. (3) generates the integrals over 

(Vn)-/n^'^. Due to the presence of derivative terms, basis functions of one higher angular 

momentum are needed in order for this application of the RJ to be accurate. 

The AZ grid-free DFT approach is extended to the computation of nuclear 

gradients.The RI is only applied once in Eq. (6). 

J ( r^V Orthononml T ( j 

Z  j ( i ^ j e „ d r . j 6 . . t - x . d r  ( 6 )  

As in Eq. (5), higher angular momentum functions are necessary to properly treat the 

derivative terms. 

I I I .  A u x i l i a r y  b a s i s  s e t s  f o r  f i t t i n g  t h e  r e s o l u t i o n  o f  t h e  i d e n t i t y .  

Since a large basis set is necessary for the RI to be accurate, during the DFT portion 

of the calculation, all matrices are augmented with sets of auxiliary functions. Before the 
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SCF procedure is begun, the auxiliary basis set is built. Each atom is given a set of even 

tempered basis functions^"^ that include angular momentum functions from zero to one 

higher than that of the valence space. The valence space is defined as s for H-He, sp for Li-

Ar, and spd for K-Xe. The latter angular momentum has been previously shown to be 

essential for functionals contain density derivative terms or when calculating nuclear 

gradients. The two index one-electron dipole velocity and overlap integrals are calculated 

over both the AO basis and the auxiliary basis and stored to disk. Using the overlap matrix 

S, the matrix W is generated (analogous to the linear combination of atomic orbitals matrix 

V). W transforms both AO and the auxiliary orbitals to an orthonormal set, because 

W^SW=I (analogous to V^SV=I). During the generation of W, the MO's are not allowed to 

contain any auxiliary character. This is done by fixing the MO coefficients and forcing the 

auxiliary space to be orthogonal to the entire MO space. Due to the size of the auxiliary 

basis set, it is crucial to test for linear dependencies. Linearly dependent functions are 

moved to the end of the W matrix and zeroed out. This is summarized in the pictorial 

representation of the W matrix in Figure (1). 

The matrix representation of the density M[n] is generated every SCF cycle 

according to Eq. (4). The k and 1 run only over the AO basis because the auxiliary basis 

functions contain no electron density, but indices i and j run over the entire basis. This 

requires the calculation of N-M- integrals, where N is the number of AO's and M is the 

number of AO's plus the number of auxiliary functions. At the end of each SCF cycle, only 

the parts of the resulting matrices that correspond to the MO space are saved. For gradient 

calculations the entire exchange-correlation potential is saved for use later in Eq. (6). 
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IV. Grid-Free DFT RESULTS 

IV. A. Functionals and methods 

The grid-free approach outlined in Sections II and HI has been used to implement 

the following DFT functionals in GAMESS. Different functionals will be used to examine 

different applications of the RI. Energy gradients will be calculated to demonstrate the RI in 

Eq. (6), which is independent of the functional. 

1. X-a' has neither n^ np cross-terms nor gradient dependence. It only involves that 

use of the RI in Eq. (3). For the uniform electron gas value of a=2/3, this is called 

the Slater functional. 

2. has no gradient dependence. It uses the RI in Eq. (2) to multiply 

together terms that depend on ^=(nj^-np)/(nj^+np) and terms depending on n. 

Functions of ^ and n are generated using the RI presented in Eq. (3). 

3. BeckeSS-^ gradient corrected exchange functional relies on the RI in Eq. (5) to 

generate y-=(Vn)-/n®'^, the dimensionless density gradient. The RI in Eq. (3) is 

used to generate functions of both n and y-. Finally, the RI in Eq. (2) is used to 

combine ail the terms. The Depristo-Kress functional^® is a predecessor to Becke88 

that is similar in design and use of the RI. 

All comparisons presented below are made to the grid based DFT code in Gaussian 

94.^' The grid used in all calculations is a pruned grid of (75, 302), in which there are 75 

radial shells and 302 angular points per shell. This results in about 7000 points per atom. 

This is the default integration grid in Gaussian 94. Both GAMESS and Gaussian94 

calculate all non-exchange-correlation terms explicitly from 4*, rather than from n. 

The auxiliary basis sets presented are based on the correlation-consistent basis sets 
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of Dunning et al?- It has been shown that by using large auxiliary basis sets EU-MP2 can 

be made exact, but one needs much smaller basis sets to get accurate energy 

differences.-"^-^^ The initial choice of auxiliary functions was a set of even tempered^'^ 

functions that spanned the same exponent range as the aug-cc-pVDZ basis. This is different 

than the initial RI-MP2 basis set used by Bemholdt and Harrison, which are uncontracted 

correlation consistent basis sets. The basis sets in this work are augmented in an even 

tempered manner. The auxiliary basis set notation is as follows: "5s3p" means that there 

are 5 s gaussians and 3 sets of p gaussians that span the same exponent range as the s and p 

shells of the aug-cc-pVDZ basis set of Dunning. "5s-H-3p-" means that there are 2 

additional diffuse s gaussians and 1 additional set of tight p gaussians. When multiple 

atoms are present, the heavy atom will be listed first and the hydrogen atom last, as in 

10s5p2d/5s2p. This notation is used throughout the remainder of this work. In our 

previous work, the even tempered basis set approach was very slow to converge the RI, 

because the basis was not augmented with diffuse or tight functions. Therefore, 10 s 

functions and 20 s functions spanned nearly the same range of exponents and gave similar 

results. 

IV. B. Hydrogen atom 

Hydrogen was first studied as an atom with the Slater functional and the cc-pVDZ 

atomic basis set (Table 1). Note that the "exchange" energy for single electron systems is 

present to cancel out the self-repulsion terms. The addition of 5 s (to match aug-cc-pVDZ) 

gaussians is found to reduce the difference from the grid based approach by over an order 

of magnitude to 0.15 kcal/mol, but the error is still larger than would be preferred. Adding 

an additional s gaussian between each gaussian of the 5s yields the 9s auxiliary basis set and 
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9s differs from the grid based approach by less than 0.01 kcal/mol. Because most 

calculations involve H within molecules, an additional diffuse s function is added to help 

account for longer range interactions, even though 9s and 9s+ give the same results for the 

H atom. Therefore, the RI presented in Eq. (3) is found to converge very quickly, as was 

found in our previous work. All further calculations will focus on more complicated 

applications of the RI. 

Gradient-corrected calculations on H with the Becke88 functional are summarized in 

Table 2. This functional requires that the auxiliary basis set contain p functions due to the 

use of the RI in Eq. (5). The initial auxiliary basis set is the one optimized for the Slater 

functional (9s+) plus 3 additional sets of p functions to yield the 9s+3p auxiliary basis set. 

This basis set differs from the grid based approach by over I kcal/mol, but the difference is 

only one sixth that of the grid-free approach with no auxiliary basis set. A set of diffuse p 

functions reduces the difference to an order of magnitude smaller than that with no auxiliary 

basis set. Adding a set of tight p functions (without the diffuse set of p functions) reduces 

the difference to %0.11 percent. Therefore, these are combined to form the 9s-i-3p+-

auxiliary basis set and the difference between the grid and grid-free methods is reduced to 

%0.10. 

IV. C. Nitrogen atom 

Atomic N was studied with an unrestricted wavefunction, the Becke88 functional 

and the cc-pVDZ atomic basis set (Table 3). The initial auxiliary basis is I0s5p2d, because 

it involves the same number of gaussians as aug-cc-pVDZ. This auxiliary basis set corrects 

the non-variational behavior that occurs if no auxiliary basis set is used, and the RI is poorly 

represented. The difference from the grid based method is still 40 kcal/mol, so chemical 
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accuracy will require a larger auxiliary basis set. Because the aug-cc-pVDZ basis does not 

provide p functions for the Is orbital, two tight sets of p functions are added and the 

difference from the grid method is reduced by 34 kcal/mol to 6.5 kcal/mol. The p functions 

improve the accuracy of the RI in Eq. (5) for atomic s functions and the RI in Eq. (2) and 

(3) for atomic p functions. A third set of p functions only results in the slight improvement 

of 0.15 kcal/mol, so no additional sets of p functions are added. Tight d functions are 

added, because polarization functions present in atomic basis sets have exponents designed 

for the bonding region and not near the atomic center. The first set of d functions reduces 

the difference from the grid by 1 kcal/mol to 5.3 kcal/mol. The second set of tight d 

functions reduces the difference from the grid method to 1.8 kcal/mol. This difference is 

only 0.18 kcal/mol the addition of the third set of tight d functions. The difference between 

the grid and grid-free method is reduced to 0.02 kcal/mol with the addition of a fourth set of 

tight d functions. Therefore the RI presented in Eq. (2), (3) and (5) are converged with the 

10s5p—2d— auxiliary basis set. The only RI not investigated is Eq. (6), since nuclear 

gradients are not relevant to an atom. 

IV. D. NH3 bend potential 

For extremely loose grids, Werpetinski and Cook'^ found that the NH3 bend 

potential obtained with grid-based DFT approaches could become disturbingly 

asymmetrical. For small basis sets, the AZ grid-free approach gave symmetrical, but 

inaccurate curves.-® As the basis set was increased, the grid-free bend potential approached 

the correct behavior. The atomic basis set used in the present calculations is cc-pVDZ basis 

set.^- The NH bond distance is fixed at I.0496A, to allow easy comparison to previous 

work.'^ -° Because the NH bond distance is optimized for the X-a functional, the gradient 
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will never go to zero for other functionals. The functional used is Becke88, so that all of 

the RI's can be investigated. 

Potential energy surfaces as a function of angle are presented in Figure 2. With no 

auxiliary basis set the curve is off by 0.5 Hartree, and the shape does not match the shape of 

the grid based curve. Adding the initial 10s5p2d/5s2p basis set (even tempered 

uncoptracted aug-cc-pVDZ) yields a properly shaped curve; the energy differs from the grid 

curve by an average of 38 kcal/mol. Enlarging the auxiliary basis set to I0s5p—2d— 

/9s+3p+-, reduces the average difference across the entire PES to 3 kcal/mol. As was 

found in RI-MP2, accurate relative energies are obtained with smaller basis sets than 

absolute energies. Using the auxiliary basis set optimized for H and N of I0s5p—2d— 

/9s+3p+-, the maximum difference anywhere on the PES is reduced to 1.0 kcal/mol. The 

range of the differences between the grid and the grid-free approaches is -0.25 to 1.01 

kcal/mol. 

The cartesian RMS gradient of NHj provides insight into the EU in Eq. (6). These 

results are presented in Figure 3. Without an auxiliary basis set, the curve is completely 

misshaped. The RI is so poorly converged that the gradient is little more than random 

numbers. This is to be expected, since the agreement of the energies was poor. Using the 

5s2p/10s5p2d auxiliary basis set moves the minimum to within 2° of the grid minimum, but 

the grid-free RMS gradient has a smaller drop than that of the grid ElMS gradient. The 

9s-i-3p-i--/10s5p—2d— basis set gives a curve that is very similar to the grid based curve, 

except for the lowest portions of the curve, which has RMS values that are larger than the 

grid based values. The 9s+3p-t-/10s5p—2d— basis set was optimized for the N and H 

atoms, and it gives the same minimum RMS gradient as the grid method. The curves are 
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almost indistinguishable. Therefore convergence of the nuclear gradient RI in Eq. (6) 

requires tight auxiliary basis functions near the nucleus. Several sets of d functions were 

needed for the RI to be accurately represented. This can be explained by the bonding in 

NH3. The atomic p orbitals on N are important in bonding and therefore d functions (one 

higher angular momentum) are needed in order for the nuclear gradient resulting from these 

bonds to be accurate. 

IV. E. Nitrogen molecule 

N-, was shown in our previous work to require a large and cumbersome atomic 

basis set to get accurate results because an auxiliary basis set was not used. In the current 

work, the aug-cc-pVDZ basis set and unrestricted wavefunctions are used for atomic N. 

The Becke88 functional is used in order to allow easy comparison to our previous work. 

Results are presented in Table 4. With no auxiliary basis set, the geometry differs from the 

grid method by 0.26 A and the binding energy differs by 38 kcal/mol. Obviously, a 

auxiliary basis set is needed to get accurate geometries and relative energies. Although the 

5s2p/10s5p2d auxiliary basis set predicts geometries to within 0.010 A of the grid method, 

the binding energies differ by 7 kcal/mol. The 9s+3p+-/10s5p—2d~ basis set predicts 

geometries within 0.002 A of the grid method and binding energies to within 0.3 kcal/mol 

of the grid method. The 9s+3p+-/10s5p—2d— auxiliary basis set gives the same 

geometry as the grid but the binding differs by 2.4 kcal/mol. 

IV. F. Extension to other systems. 

The auxiliary basis sets developed for NH3 are generalized to elements up to Ne. 

The aug-cc-pVDZ basis sets are used to provide the exponents for the tightest and most 

diffuse gaussian function of the initial 5s2p/10s5p2d auxiliary basis sets. Results for both 
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5s2p/10s5p2d auxiliary basis set and the larger auxiliary basis sets are presented. 

The ^Aj and states of CR, are compared in Table 5 with the Becke88, 

Depristo-BCress, and B-VWN5 functionals. In our previous work, the EU only converged 

after the atomic basis set was uncontracted and augmented with additional functions. The 

AO basis set is cc-pVTZ.^- The ^Bj state is optimized with a restricted open shell 

wavefunction. Experimental values are presented in Table 5 for comparision.^^-^^ Using 

no auxiliary basis set results in H-C-H bend angles that differ from the grid based approach 

by over 50° for all three functionals studied. The C-H bond distances differ from the grid 

based predictions by 0.3 A. The predicted 'A, - ^Bj splittings differ from the grid based 

values by as much as 0.33 eV. As is to be expected, the RI is not adequately represented by 

the CFL, atomic basis set. The 10s5p2d/5s2p auxiliary basis set reduces the difference of 

the grid-free from the grid results for all of all the angles, with the largest difference being 

8° for the B-VWN5 triplet. The largest difference in bond lengths between the grid and 

grid-free approaches is reduced to 0.016 A with the addition of an auxiliary basis set. The 

grid/grid-free agreement on splitting energies is improved, with the largest difference being 

0.09 eV. Enlarging the auxiliary basis set to 10s5p—2d—/9s+2p-i- predicts angles that are 

all within 0.4° of the values predicted with the grid. The largest difference in predicted 

bond distances is reduced to 0.004 A. The predicted splittings all agree to within 0.06 eV 

of the grid-based predictions. The largest auxiliary basis set of 10s5p—2d—/9s+2p-f-- has 

o 

the same maximum bond difference of 0.004 A, a slightly larger splitting difference of 0.07 

eV for B-VWN5, and a larger angle difference of 1.7° for the triplet B-VWN5. In all 

calculations, the ^B, was correctly found to be the ground state. The DePristo-Kress and 

Becke88 functionals are both gradient corrected exchange functionals, and they are found to 
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have similar convergence properties with respect to the RI. For both the grid and grid-free 

approaches, the addition of electron correlation by the VWN5 functional is needed in order 

to avoid overestimating the 'Aj - splitting. For CR,, auxiliary basis sets are found to 

be effective for functionals that depend on n^^, n^, Vn^^, and Vn^. Nuclear derivatives 

are also found to be reliable, because the grid and grid-free approaches predicted similar 

geometries. 

The geometry of the ground state of water is optimized with the 6-3IG** basis set^^ 

and the Becke88 functional. Results are presented in Table 6. Without any auxiliary basis 

functions, the O is predicted to be sp- hybridized with a H - O - H angle of 120.1°. The 

predicted H-O bond distances are found to differ from the grid based value by 0.023 A. 

Addition of the 10s5p2d/5s2p auxiliary basis set yields a H - O - H angle that differs from 

the grid by 4.2°. The bond distance is found to differ from the grid by 0.013 A. The 

I0s5p—2d—/9s+2p4-- auxiliary basis set reduces the difference in the predicted angle to 

1.2° and the difference in the predicted bond distance to 0.004 A. The 10s5p—2d— 

/9s+2p+- auxiliary basis set predicts a geometry that differs from the 10s5p—2d~/9s+2p-i-

auxiliary basis set by only 0.001 A and 0.2°. 

Given the success in these previous systems, these auxiliary basis sets are applied to 

several additional molecules with the Becke88 functional. High spin cases are all treated 

with unrestricted wavefunctions. O-,, F^, and B^H^ use the cc-pVTZ basis set as the atomic 

basis set. BeHj and LiH use the 6-3IG** basis set, because the cc-pVTZ basis set is not 

currently available for Be and Li. All molecules are geometry optimized using nuclear 

gradients. Inter-atomic distances are presented in Table 7. With no auxiliary basis sets, the 

largest variance from the grid based result is 0.6 A for the B - B distance in BjH^. The 
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smallest difference from the grid based approach is 0.(X)9A for the terminal H in 82!!^. 

The I0s5p2d/5s2p auxiliary basis set reduces the B - B distance predicted to 1.870 A which 

differs from the grid prediction by 0.055 A. The agreement of the inter-atomic distances 

predicted by the grid and grid-free approaches is improved for all distance in Table 7 upon 

adding the 10s5p2d/5s2p auxiliary basis set. Extending the auxiliary basis set to I0s5p— 

2d~/9s+2p+- reduces the largest difference between the grid predicted and the grid-free 

predicted distance to 0.014 A. Other grid-free predicted distances differ from the grid 

predicted distances by as little as 0.001 A. The larger I0s5p—2d—/9s+2p+- auxiliary 

basis set predicts all intra-atomic distances to within 0.013 A of the grid predicted distances. 

Clearly, structures are not predicted properly without an auxiliary basis set, but the largest 

o 

auxiliary basis sets predict structures that agree with the grid to within 0.013 A. 

Binding energies are predicted using the Becke88 functional for the same systems 

studied above in Table 7. Binding energies are calculated relative to isolated atoms and are 

presented in Table 8. Since geometries are unreliable without an auxiliary basis set, the 

binding energies are not reliable without an auxiliary basis set. The largest difference from 

the grid based prediction is 6.0 eV for B^H^. The I0s5p2d/5s2p auxiliary basis set reduces 

the largest difference by an order of magnitude to 0.6 eV. The 10s5p—2d—/9s+2p-i--

auxiliary basis has a difference of 0.69 eV for F,. For the other molecules studied, this 

auxiliary basis set reduces the difference to 0.19 eV or less. The larger 10s5p—2d— 

/9s+2p+- basis set predicts a binding energy that differs from the grid approach by 0.82 eV 

for F,. 
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IV. G. Ft binding energies 

Ft has an obvious difference in predicted binding energies for the grid and grid-free 

approaches. This is issue was investigated further. The Slater functional was used, 

because in order for an auxiliary basis set to work for the Becke88 functional, it must also 

work for the simpler Slater functional. Results of these additional calculations are 

summarized in Table 9. The 10s5p2d auxiliary basis set predicts an F-, bond distance that is 

o 

0.02 A different from the grid prediction. The I0s5p—2d~/9s+2p+- auxiliary basis gets a 

bond distance that is within 0.0001 A of the grid predicted bond distance. The predicted 

binding energies differ by 0.66 eV. Since the geometries agree, this auxiliary basis set is 

used as the starting point of all additional calculations. The addition of a single tight s or 

diffuse s function does not change the predicted properties. To verify that an insufficient 

number of s functions in the auxiliary basis set is not the problem, 5 tight and 5 diffuse s 

functions are simultaneously added to the auxiliary basis set and the predicted properties are 

not changed. The addition of an extra set of tight or diffuse p functions also does not 

change the predicted properties. Therefore, an extra 3 sets of tight and an extra 3 sets of 

diffuse p functions were added simultaneously to the auxiliary basis set. The predicted 

properties remained unchanged. 2 additional sets of tight d functions and 2 additional sets 

of diffuse d functions are added, and the bond distance shifted slightly (0.0009 A), but the 

binding energy did not change. This is not unexpected, since Slater energies do not require 

higher angular momentum, but Slater nuclear gradients do require higher angular 

momentum. The number of s functions spanning the aug-cc-pVDZ space is doubled and an 

extra diffuse s is added, since this proved useful in building the auxiliary basis set for H. 

Neither binding energies nor properties changed. The number p functions is doubled, and 
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no change in the properties predicted occurs. Clearly the grid and grid-free approaches 

agree on the Slater predicted bond length of 1.404 A. The grid and grid free approaches 

consistently predict Slater binding energies that differ by 0.66 eV. To verify that this is not 

a result of an interaction between the specific atomic basis set used and the grid or the 

auxiliary basis set used, results for the 6-3IG basis set are presented in Table 9. The grid 

and the grid-free 10s5p—2d— auxiliary basis set predict the same bond length, but different 

binding energies. Clearly their is a fundamental difference in the energetics predicted by the 

grid based approach and the grid-free approach. 

IV. H. The next row of the periodic table: SiH, 

The auxiliary basis sets are extended to the next row of the periodic table. The 

smallest auxiliary basis set is 13s9p2d, because that matches the aug-cc-pVDZ basis set. 

The larger 10s5p—2d~ auxiliary basis set is extended to the Lithium row as 13s+9p—2d—. 

SiH2 is investigated to see if these simple extensions are adequate. The atomic basis set is a 

modified version of the double ^ basis set of Dunning and Hay.^® A single set of d 

polarization is added to the Si (^=0.395). This is (3s)/[2s] for H and 

(1 ls,7p,ld)/[6s,4p,ld] for Si. Results are presented in Table 10. When no auxiliary basis 

sets are used, the triplet is incorrectly predicted to be the ground state. Bond lengths differ 

by 0.04 A and angles differ by 6° from the grid based results . With the addition of the 

13s9p2d/5s2p auxiliary basis set, the grid-free approach correctly predicts the singlet as the 

ground state. Bond lengths are predicted to with 0.01 A of the grid approach, and the H -

Si - H angle is predicted to within 2.7° of the grid approach. The larger 13s-i-9p—2d— 

/9s+3p+- auxiliary basis set improves the agreement of bond lengths to within 0.007 A, 

both angles to within 1.9°, and the triplet-singlet splitting to within 2.6 kcal/mol. Since the 
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agreement is not as good as was achieved for the Lithium row, the basis set was 

investigated further. Adding two additional diffuse s functions has no significant effect on 

any of the predicted values. Adding two additional sets of tight d functions to the auxiliary 

basis set, improves the agreement on the splitting by 0.67 kcal/mol to 2.0 kcal/mol. The 

triplet angle is 1.4° closer to the grid value, but the singlet angle is 0.3° farther away from 

the value predicted by the grid approach. The singlet bond distance is 0.0037 A closer and 

the triplet bond distance is 0.0019 A closer to the grid prediction. Adding a fifth set of tight 

d functions improves the agreement with grid for both the singlet and the triplet bonds by 

® o 
0.0014 A and 0.0006 A, respectively. The extra set of d functions causes the singlet angle 

to be 0.3° closer to the grid value, but the triplet angle to be 0.3° farther away from the grid 

value. The triplet-singlet splitting values is 0.16 kcal/mol closer to the grid value. Adding a 

sixth set of tight d functions to the auxiliary basis set on Si only makes the singlet SiH bond 

agree less with the grid, while leaving all other predicted values the same. Therefore, the 

five sets of tight d functions are adequate. To this I3s+9p—2d / 9s+3p+- auxiliary 

basis set, an additional set of tight p functions were added, and no predicted values 

changed. A set of diffuse p functions was therefore added instead, and the agreement of the 

grid is worse by 0.15 kcal/mol for the binding. The only predicted value that was closer to 

the grid predicted value after adding this set of p functions was the singlet bond by 0.0004 

o 

A. A second set of diffuse p functions was added to the auxiliary basis set, and the singlet 

bond is the only predicted property that agrees better with the grid than before the diffuse p 

functions were added. Therefore, diffuse p functions are not included in the auxiliary basis 

set. 13s+9p—2d / 9s+3p+- is therefore chosen as the optimized auxiliary basis set for 

SiHj. 
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IV. I. Timing comparisons 

For several different auxiliary basis sets, timing comparisons are made to the grid 

based method (Table 11). Timing comparisons are not made to the grid-free approach 

without an auxiliary basis set, since the results are poor enough to render timings irrelevant. 

The I0s5p2d/5s2p auxiliary basis set is not adequate for many molecules, so it is not used 

either. The I0s5p—2d—/9s+3p-t-- and the 10s5p—2d—/9s+3p+- both give reliably give 

reasonable results, therefore they are used for comparisons. In all cases, the CPU time of 

the entire calculation is compared. The grid used is the default grid described above, which 

provides about 7000 points per atom. Both atoms and molecules are studied. All 

calculations are run in direct mode. The matrix manipulations dominate the timings for 

the smaller molecules, and therefore the grid-free approach is significantly slower for small 

molecules such as O-,. The integral calculations dominate the calculation for larger 

molecules, and therefore the grid-free approach only took twice as long as the grid approach 

for larger molecules like BoPI,. 

IV. Conclusions 

The grid-free approach to DFT provides an alternative to the grid based approach to 

DFT. The resolution of the identity (especially for gradient corrected functional and energy 

gradient calculations) requires a more accurate basis set than does the wavefunction, 

therefore an approach that utilizes auxiliary basis sets has been developed. Previous work 

on auxiliary basis sets have dealt with the fitting of the n"^ X-a potential (Dunlap et at) or 

the Coulomb potential (RI-MP2). The gradient integrals terms that appear in Eq. (5) and 

(6), present a unique problem of requiring orbitals of higher angular momentum than that of 
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the AO basis set. An even tempered basis set is used to allow for the easy and systematic 

enlargement of the auxiliary basis set. By using the Dunning basis sets as a guide for what 

the range of exponents should be, an effective auxiliary basis set is presented for the 

elements through argon is developed. 
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Table 1: Hydrogen atom with the Slater functional 

Auxiliary 
Basis set 

Energy 
(Hartree) 

Difference 
from grid 
(kcal/mol) 

Percent 
difference 
from grid 

Grid -0.455670 0.00 0.00 

None -0.462003 -3.97 -1.39 

5s -0.455904 -0.15 -0.05 

9s -0.455684 -0.01 -0.00 

9s+ -0.455684 -0.01 -0.00 

Table 2: Hydrogen atom with the B-null functional 

Auxiliary 
Basis set 

Energy 
(Hartree) 

Difference 
from grid 
(kcal/mol) 

Percent 
difference 
from grid 

Grid -0.496403 0.00 0.00 

None -0.479810 10.49 3.37 

9s+3p -0.493721 1.68 0.54 

9s+3p4- -0.494663 1.09 0.35 

9s+3p- -0.495862 0.34 0.11 

9s+3p+- -0.495869 0.33 0.10 
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Table 3: Nitrogen atom with the B-nuII functional 

Auxiliary Energy Difference Percent 
Basis set (Hartree) from grid difference 

(kcal/mol) from grid 

Grid -54.381408 0.00 0.000 

None -54.833381 -283.62 -0.831 

10s5p2d -54.316204 40.92 0.120 

10s5p--2d -54.371032 6.51 0.019 

10s5p—2d -54.371275 6.36 0.019 

lOsSp—2d- -54.373005 5.27 0.015 

10s5p—2d- -54.378489 1.83 0.005 

10s5p—2d— -54.381700 -0.18 0.000 

10s5p—2d— -54.381436 0.02 0.000 

Table 4: NT with the B-null functional and aug-cc-pVDZ 

Auxiliary Binding Bond length 
Basis set energy (Angstroms) 

(kcal/mol) 

Grid 178.5 1.113 

None 140.7 1.376 

I0s5p2d 185.7 1.123 

10s5p—2d- 178.2 1.115 

10s5p—2d— 175.8 1.113 
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Table 5: CH2 with cc-pVTZ 

Auxiliary Basis set 'A| CH bond 'A, H-C-H •^B1 CH bond •^B, H-C-H 

(Angstroms) angle (Angstroms) angle splitting (eV) 

Experimental 1.11 102° 1.07 134° 0.369-0.390 

Becke88 functional 

Grid 1.135 100.6° 1.096 131.8° 0.88 

None 1.420 61.1° 1.259 83.5° 0.55 

10s5p2d / 5s2p 1.151 96.7° 1.100 131.7° 0.97 

10s5p—2d~ / 9s+3p+- 1.139 100.2° 1.098 132.0° 0.93 

10s5p—2d-— / 9s+3p+- 1.137 100.7° 1.098 132.1° 0.92 

DePristo functional 

None 1.416 62.0° 1.283 81.2° 0.29 

iOs5p2d / 5s2p 1.144 99.1° 1.099 132.0° 0.91 

10s5p—2d— / 9s+3p+- 1.136 100.6° 1.094 132.5° 0.89 

10s5p—2d-— / 9s+3p+- 1.133 101.4° 1.094 132.1° 0.89 

b-vwn functional 

Grid 1.115 101.0° 1.079 134.0° 0.38 

None 1.411 60.5° 1.253 82.3° 0.13 

10s5p2d/5s2p 1.129 97.5° 1.091 125.9° 0.37 

10s5p—2d~ / 9s+3p+- 1.118 100.7° 1.077 134.4° 0.32 

10s5p—2d— / 9s+3p+- 1.116 101.3° 1.075 135.7° 0.31 



www.manaraa.com

87 

Table 6: H2O with B-null functional and 6-3IG** 

Auxiliary Basis set 0 - H bond 
(Angstroms) 

H - 0 - H angle 

Grid 0.987 102.1° 

None 0.964 120.6° 

10s5p2d / 5s2p 1.000 97.9° 

10s5p—2d~ / 9s+3p+- 0.991 100.9° 

10s5p—2d— / 9s+3p+- 0.990 100.7° 
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Table 7: Bond lengths in several systems with B-null functional in Angstroms 

Auxiliary Basis set: Grid None iOs5p2d/5s2p 10s5p—2d"/ 
9s+3p+-

10s5p—2d—-/ 
9s+3p+-

O2 bond 1.249 1.320 1.292 1.254 1.249 

F2 bond 1.460 1.589 1.517 1.455 1.446 

Terminal H - B bond in B2H6 1.207 1.198 1.210 1.208 1.208 

Bridging H - B bond in B2H6 1.344 1.592 1.361 1.348 1.347 

B-B distance in B2H^ 1.815 2.603 1.870 1.829 1.824 

Be - H bond in BeH2 1.351 1.315 1.359 1.361 1.361 

Li - H bond in LiH 1.657 1.695 1.674 1.663 1.670 

Table 8: Binding energies of several systems with B-null functional in eV 

Auxiliary Basis set: Grid None 10s5p2d/5s2p 10s5p—2d~/ 10s5p—2d—/ 
9s+3p+- 9s+3p+-

O2 binding 4.42 5.14 4.29 4.25 4.14 

F2 binding 1.34 0.57 0.74 0.65 0.52 

B2H5 binding 20.66 15.67 21.78 20.85 20.75 

BeH2 binding 5.34 6.00 5.69 5.35 5.53 

LiH binding 1.55 4.07 2.15 1.58 1.58 
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Table 9: F2 with Slater Functional and cc-pVTZ basis set 

Auxiliary Basis Bond distance 0 
(A) 

Binding (eV) 

Grid 1.4038 2.82 

No auxiliary basis 1.5801 2.93 

10s5p2d 1.4231 3.53 

10s5p—2d-- 1.4037 3.48 

10s-i-5p—2d~ 1.4037 3.48 

10s-5p—2d~ 1.4037 3.48 

lOs h ff++5p—2d— 1.4037 3.48 

10s5p—2d~ 1.4037 3.48 

10s5p—-t-2d- 1.4037 3.48 

10s5p h-M-2d~ 1.4037 3.48 

10s5p—2d H- 1.4028 3.48 

19s+5p—2d— 1.4037 3.48 

10s9p 2d- 1.4037 3.48 

Grid (6-3IG) 1.4744 2.56 

10s5p—2d- (6-3 IG) 1.4744 3.10 
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Table 10: SiH2 with b-vwn5 functional and Dunning/Hay double zeta basis set (+ld) 

Auxiliary Basis Singlet SiH 
bond 

(Angstroms) 

Singlet H-
Si-H 
angle 

Triplet SiH 
bond 

(Angstroms) 

Triplet H-Si-H 
angle 

Splitting 
(kcal/mol) 

Grid 1.5338 91.2° 1.4932 118.1° -22.06 

None 1.4968 85.5° 1.4651 119.0° 1.12 

13s9p2d/5s2p 1.5419 92.3° 1.5055 120.8° -26.33 

13s+9p—2d- / 9s+3p+- 1.5480 90.6° 1.5004 120.0° -24.70 

I3s+++9p—2d- / 9s+3p+- 1.5483 90.6° 1.5004 120.0° -24.73 

13s+9p—2d-— / 9s+3p+- 1.5443 90.3° 1.4985 118.6° -24.06 

13s+9p—2d / 9s+3p+- 1.5429 90.6° 1.4979 118.9° -23.90 

I3s+9p—2d / 9s+3p+- 1.5433 90.6° 1.4979 118.9° -23.90 

13s+9p—2d / 9s+3p+- 1.5433 90.6° 1.4979 118.9° -23.90 

13s+9p—+2d / 9s+3p+- 1.5429 90.6° 1.4981 119.0° -24.05 

13s+9p—++2d / 9s+3p+- 1.5429 90.6° 1.4981 118.9° -23.98 



www.manaraa.com

91 

Table 11: Timing comparisons between the grid-free and the grid based approach 

Molecule Grid 10s5p—2d~ / 9s+3p-t-- 10s5p—2d— / 9s+3p+-

N 8.6 16.6 16.7 

N2 43 341 322 

0 17.1 34.8 35.0 

O2 59 493 465 

B2H6 2745 6590 7308 

BeH2 12.8 66.6 68.0 

LiH 12.8 32.1 31.6 
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CHAPTER 5: A STUDY OF FECO+ WITH 

CORRELATED WAVEFUNCTIONS 

A paper submitted to Faraday Transactions 

Kurt R. Glaesemann, Mark S. Gordon, and Haruyuki Nakano 

Abstract 

A study of FeCO"^ and Fe"^ using botii the second-order multi-configurational 

quasi-degenerate perturbation theory (MC-QDFT2) method and the coupled cluster method 

are presented. An all-electron triple-^ valence plus polarization basis set was used in all 

calculations. The equilibrium CCSD(T) geometry of FeCO"*" is found to be linear C^S") with 

a Fe"*" to CO distance of 1.905A and a CO bond distance of 1.133 A. The dissociation 

energy Dq of FeCO"^ to Fe"^ and CO is predicted to be 28.8 kcal/mol, which is 

within the experimental range. Excited state properties including potential energy surfaces 

and Dg are predicted for the low lying sextet and quartet stales of FeCO"^. The first excited 

state is predicted to be "^A with a of 17.6 kcal/mol. The lowest sextet state is predicted to 

be with a Dq of 12.3 kcal/mol. Several examples of pathological behavior at many levels 

of theory have been discovered and are discussed. 

I. Introduction and background. 

CO is important in the chemistry of transition metals such as Fe"^, playing a role in 

many chemical processes and industrial procedures.' --^ Hurlburt et. al? pointed out that 

there are thousands of literature citations that include the phrase "metal carbonyl".*^ In the 

oxidative addition of H2 to metals and the reductive elimination of H, from metals,^ CO is 

important because it effectively stabilizes transition metals, even those that carry negative 
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charges.' The detailed nature of the CO wavefunction has been studied experimentally 

using electron momentum spectroscopy.^ Besides Fe"^, CO has been experimentally studied 

interacting with Cu"^,^ Fe",''-'- Fe,'- Ni"," Cr"^,'® 

Mo"^,'® and Co"^,'^ using diffraction,^ spectroscopy,^ collision-induced dissociation (CID) 

in a guided ion beam tandem mass spectrometer,^-^-'^ ''^ energy resolved CID," negative 

ion photoelectron spectroscopy,'- molecular beam photoionization mass spectrometry,'® 

and Fourier transform ion cyclotron resonance mass spectrometry.^ 

FeCO^ has been studied as a catalyst for reactions involving polyhalogenated 

methane and halogens both in a microwave discharge and without microwaves.'^ This 

capability makes FeCO"^ of particular interest given the role that halogens play in the 

atmospheric destruction of the ozone layer.Gas phase studies and theoretical calculations 

have shown that FeCO"^ has significandy different reactivity and selectivity than Fe"^ and 

other complexes such as Fe(K,0)jj'^.'^-'^-'^ Armentrout and Tjelta found that FeCO"^ 

activates both C-C and C-H bonds in ethane, while FeCH^O)"^ preferentially activates the 

C-H bonds.-*^ This selectivity can be partially explained by the observation that R groups 

must interact with the 3dcT orbital in FeCH^O)"^ instead of the empty 4s orbital in FeCCO)"^.-® 

The photodissociation of Fe(C0)5 has been studied with femtosecond lasers. FeCO"^ plays 

an important role in this reaction as the final intermediate, and as the reactant in the slowest 

step of the mechanism.-' Careful study of the velocity distribution in the Fe(CO)5 

dissociation has also proved useful in analyzing the mechanism.-- Majima found that using 

a transversely excited atmospheric (TEA) CO, laser to dissociate FeCCO)^ in the presence of 

SFg resulted in no FeCO"^ ion formation, and the loss of the first CO was the rate 

determining step.^^ 
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The ground state of FeCO"^ is consistently reported to be quartet with 

symmetryalthough Fe"^ is experimentally known to be a sextet-^ and CO is a 

singlet. None of the experimental or theoretical studies predict COFe"^ as the ground state 

geometry, although neutralization-reionization mass spectrometry (NRMS) had small FeO"^ 

fragment peaks implying that some COFe"^ was present.-^ 

A wide variety of experimental studies have been carried out on FeCO"^. Selected 

ion flow tubes (SIFT) and collision-induced dissociation (CED) have proven effective in 

measuring bond dissociation energies (Dq) of Fe"^ containing compounds such as 

Fe(N2)„^,-9 Fe(CH20)„^r9 Fe(CS2)„^,^° and FeCO"^ .29.31.32 CQ) gj^es ^ FeCO"^ Dq of 

36.1±1.8 kcal/mol relative to "^F Fe"*" and ground state CO. Vibrationally corrected CID 

gives a Dq of 30.9±0.9 kcal/mol,-' relative to ^D Fe"^. E^oduct kinetic energy release 

distributions (KERDS) gives a Dq of 3l.8±3 kcal/mol,^^ relative to ^D Fe"^. Fourier 

transform mass spectrometry results were analyzed with Cook's kinetic method to give Dq 

relative to Fe(C^H4)•^, yielding DQ(FeCO'*')= 3I.2±0.2,'' relative to an unspecified state of 

Fe"^. Ng et. al. have studied FeCO"^ using photoelectron-photoion coincidence (PEPICO) 

and determined the Dq of Fe(CO)jj"^ to be I7.8±0.9, 25.2±1.1, 25.7±i.4, 41.5±1.6, and 

39.3±2.0 kcal/mol for n=5,4.3,2,l respectively,''^ relative to ^D Fe"^. PEPICO introduces 

Fe(C0)5 into the photoionization region using a supersonic expansion to reduce rotational 

and vibradonal scattering.^"^-^^-^^-^^ In the work of Ng et. al., relative PEPICO intensities 

for Fe(CO)'^^ had to be estimated for n=2,I,0. The primary focus of that work was on 

getting good relative intensities. In addition to PEPICO, Ng et. al. used CID to study 

FeCO"^. FeCO"^ ions were selected with quadrapole mass spectroscopy (QMS) and then 

collided with Ar to induce dissociation. The ratio of FeCO"^ reactant ions and Fe'^ product 
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ions was analyzed with QMS, to give a Dq of 33±4 kcal/mol for FeCO'^,^'^ relative to 

Fe"^. Since the PEPICO value is just an estimate, the experimental range for Dq to ground 

state Fe"*" and CO is 30.9-33.0 kcal/mol with experimental error bars out to 28.8-37.0 

kcal/mol. Dq for dissociation to '^F Fe"^ should be 5.35 kcal/mol larger than this range; that 

is, the experimental range for dissociation to "^F Fe"^ is 34.15-42.35 kcal/mol. 

The ground state of FeCO"^ has been investigated using many different theoretical 

methods, giving a wide range of dissociation energies. It is important to note that 

experiments measure DQ, while many calculations predict D^ values. D^ values are always 

slightly larger than Dq values; in section in, this difference is predicted to be 0.95 kcal/mol 

for FeCO^. 

The density functional theory (DFT) hybrid functional B3LYP^® predicts a FeCO"^ 

binding energy of D^=37.0 kcal/mol relative to "^F Fe"^ that is within the experimental error 

bars, unlike BLYP (Dg=47.8 kcal/mol) and LSDA (Dg=50 kcal/mol).-"^ The modified 

coupled pair functional (MCPF) predicts a binding energy (28.9 kcal/mol) that is too 

small.Single-reference MP2 predicts 30.8 kcal/mol-^ which is also too low. Others 

have calculated the D^ for dissociation relative to Fe"^. This D^ is predicted by B3LYP to 

be 32.7 kcal/mol,^' which is within the experimental range. The previous calculations 

predict little significant charge transfer from Fe"^ to CO, and they demonstrate that an explicit 

treatment of correlation is essential to get proper energetics and geometries for FeCO"^,"^ as 

well as for FeCO"*^' and FeCO.-®-'^--'^^ 

Studying multiple electronic states often requires a multi-configurational 

wavefunction. The investigation of multiple potential energy surfaces (PES) frequently 

requires the use of state-averaged (S A) wavefunctions to obtain a consistent treatment of the 
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various electronic, and especially degenerate, states. A proper description of such species 

often requires more than a single, simple Lewis structure."*^ This requirement reduces the 

utility of DFT methods, except for those that implement one of the fractional occupation 

number (FON) formalisms'*^-'^-"^^ "^^ or the DFT CI singles formalism."^^ In this work the 

low lying quartet and sextet states of FeCO"^ are studied using multi-configurational 

self-consistent field (MCSCF)^® wavefunctions, second-order multi-configurational 

quasi-degenerate perturbation theory (MC-QDPT2),^'-^--^^ and single-configuration 

coupled cluster theory with single and double replacements, augmented by perturbative 

triples [CCSD(T)].^''^ In Section n the theoretical approaches used to study Fe"^ and FeCO"^ 

are explained in detail. In Section in Fe^ is examined with several different methods and 

basis sets. In Section IV FeCO"*" PES are studied and frequencies of the lowest sextet and 

quartet equilibrium geometries are presented. In Section V the possible origins of poor 

behavior in multi-reference perturbation theory are discussed in detail. 

I I .  T h e o r e t i c a l  M e t h o d s  

FeCO"^, CO, and Fe"*" were studied using an all-electron triple-^ valence plus 

polarization (TZVP) basis set. For Fe, a [10s6p] contraction of Wachters' (14s9p) 

primitive basis^^ was supplemented with the [3d] contraction of (6d) primitives proposed 

by Rappe et. This basis set was augmented with two sets of p functions (^=0.231 

and ^=0.0899) to give an adequate representation of the 4p subshell. This is the Fe triple-^ 

valence (TZV)^^ basis set of (14s9p5d)/[10s8p3d]. A set of f functions was added to 

provide polarization (^=1.663)^®. For C and O the Dunning [5s,3p]^^ contraction of the 

(10s,6p)^ primitives was used as the triple-^ valence (TZV)^^ basis set. One set of d 
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functions was added to provide polarization to the C (^=0.72)^' and O (^=1.28).^' The 

quantum chemistry code GAMESS^- was used, unless otherwise noted. The CO bond 

distance was fixed at 1.1283A for most PES, since previous work has shown that the 

positively charged Fe"^ ion causes little relaxation of the CO bond.-"^ The geometries of the 

lowest lying quartet and sextet states were fully optimized including relaxation of the CO 

bond. 

Most calculations presented in this work are based on fully-optimized reaction space 

(FORS)^^-^ MCSCF wavefunctions, also known as complete active space self-consistent 

field (CASSCF)^^-^^-^^ *^® wavefunctions. The basic FeCO"^ wavefunction has 13 MCSCF 

core orbitals that are doubly occupied in all configurations and 11 orbitals with 13 electrons 

in the multi-configurational active space (13/11). The MCSCF active space includes the six 

valence 3d and 4s orbitals on Fe"^, CT donor lone pair orbital on CO, and the CO n bonding 

and 71* anti-bonding orbitals. This active space allows for a proper treatment of the Fe"^ 

ion, carbon a donation of the CO lone pair, and 7t backbonding into the CO n system. 

Reduced active spaces were appropriate in some instances and will be described below. 

The calculations on Fe"^ have a corresponding active space that includes the Fe"^ valence 3d 

and 4s orbitals. By carefully choosing orbitals, the MCSCF wavefunction was selectively 

converged to different spatial and spin symmetries. Dynamical correlation is usually 

necessary to obtain accurate energetics, therefore multi-configurational quasi-degenerate 

perturbation theory to second-order (MC-QDPT2)^'-^--^^ was applied to the converged 

MCSCF wavefunction. The FeCO"^ MC-QDPT2 calculations correlated all molecular 

orbitals, except the II chemical core orbitals. In other words, the O lone pair and the CO 

sigma bond orbitals were doubly occupied in the MCSCF wavefunction, but were 
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correlated at the MC-QDPT2 level. The Fe"^ active space is the same in the MC-QDPT2 

and MCSCF wavefunctions, with 9 chemical core orbitals. 

The MC-QDPT2 method is not simply a multi-configurational extension of 

single-configuration M0ller-Plesset (MP2)^^ perturbation theory, although MC-QDPT2 

does include MP2 as a subset.^^ MC-QDPT is a multi-state and multi-configurational 

perturbation method based on Van Vleck perturbation theory, while MP2 is based in 

Rayleigh-Schrodinger perturbation theory. The MC-QDPT2 approach facilitates an 

accurate treatment of both the ground state and excited states, with various space and spin 

symmetries (including simultaneously treating truly and nearly degenerate states 

correctly).^MC-QDET2 is a perturb then diagonalize approach, in which the 

Hamiltonian is improved first with perturbation theory and then diagonalized to obtain the 

second-order energies.The degenerate states C^A, "^n, ^A) are all treated 

using SA-MCSCF wavefunctions to properly account for their doubly degenerate nature. 

Since the states that are averaged are energetically equivalent, discontinuities^- resulting 

from state-flipping do not appear in the SA-MCSCF FES. 

Multi-reference second-order configuration interaction (MR-SOCI)^^-^"^ was also 

used to add correlation to selected MCSCF calculations. MR-SOCI involves single and 

double excitations out of the MCSCF active space, without reoptimizing the orbitals. This 

provides a variational method for adding second-order correlation effects to the 

wavefunction. MR-SOCI provides a variational check on the MC-QDPT2 wavefunction. 

Some calculations presented are based on single-configuration wavefunctions. 

Coupled cluster theory including single and double replacements, with triples added 

perturbatively, has proven to be a powerful method for predicting the energetics of systems 
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that can be treated with single-configuration wavefunctions. In this work, the 

CCSD(T)^^-^^ method with the TZVP basis set has been used to investigate the *1.' FeCO"^ 

ground state. The results of these calculations are compared with those obtained using the 

multi-reference methods. To avoid spin-contamination, the ROHF based formalism is 

used for the CCSD(T) calculations. The approach used is based on the Bartlett definition of 

RCCSD(T)^^ in which the triples are computed with contributions from both singles and 

doubles. This is the most common definition of open-shell triples although certainly not the 

only one.^® The MOLPRO^^ ab initio package was used for most CCSD(T) calculations. 

I I I .  F e +  

The Fe"^ ground and first excited states are known experimentally to be (3d^4s') 

and'^F (3d^4s°), respectively. The experimental splitting has been determined to be 5.35 

kcal/mol.-^ SA-MCSCF calculations were performed to obtain the correct wavefunctions 

for the (five fold degenerate) and "^F (seven fold degenerate) electronic states. MCSCF 

natural orbital occupation numbers (NOON) for both states are presented in Table 1 and the 

energy splittings at several levels of theory are given in Table 2. State averaging the 

wavefunction correctly gives all 3d orbitals the same NOON for each spin multiplicity. The 

poorly predicted splitting of 38.5 kcal/mol at the MCSCF level of theory is not surprising 

given the difficult nature of predicting the separation with ab initio methods.^®-^'-®--^^ 

MR-SOCI and more efficient MC-QDPT2 calculations were carried out, to provide 

dynamic electron correlation in addition to the near degenerate correlation provided by the 

use of a multi-configurational wavefunction. The MC-QDPT2 results are closer to 

experiment than MCSCF, although this method does slightly overcorrect the MCSCF 



www.manaraa.com

103 

splitting. The MR-SOCI wavefunction has a larger absolute error than MC-QDPT2. The 

error for CCSD(T) lies between the MC-QDPT2 and MR-SOCI errors. Previous 

calculations on transition metal cations^ suggest that additional polarization functions (e.g. 

g functions on Fe) may be necessary to obtain accurate atomic splitting. Adding a set of g 

functions (^=1.7) with the six orbital active space provides little improvement. Therefore g 

functions are not used in the FeCO"^ calculations. 

I V .  F e C O +  

IVA. Ground state PES 

Initially the ground state PES for (as a function of the Fe - C distance) was 

calculated using the MCSCF/MC-QDPT2 method presented in Section n. For MCSCF 

wavefunctions, is found to be higher than the lowest sextet state (the lowest lying sextet 

state will be discussed in detail in Section IVB). With the addition of MC-QDPT2 dynamic 

correlation, the ground state for FeCO"*" is correctly found to be Just as in the Fe"^ 

calculations, correlation lowers the quartet states significantly more than the sextet states. 

Results are presented in Figure I, with the zero of energy defined by separated Fe"*" and 

ground state CO at each level of theory. The with respect to '^F Fe"^ is found to be 33.4 

kcal/mol (at the low end of the experimental range) with an equilibrium distance of 1.93 A. 

e 

A discontinuity that appears at about 0.34 A inside R^ is discussed in detail in Section V. 

Close examination of the MCSCF and MC-QDPT2 potential energy curves reveals 

that the virtual 4s orbital on Fe"*" shifts onto CO as the complex dissociates. This results in a 

Dg that is too small (although the equilibrium geometry is valid). FORS-MCSCF is size-

consistent, but size-consistency is only applicable if the active spaces in the separated Fe^ 
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and CO are the same as in the Fe"^ — CO supermolecule. The shifting orbital resulted in a 

smaller active space on Fe"^ and a larger active space on CO in the supermolecule. 

Variational methods such as MCSCF can correct for poorly chosen orbitals and lower the 

energy, but perturbative methods such as MC-QDPT2 require a well-balanced active space 

to be reliable. Therefore this orbital was removed from the MCSCF active space. The 

results with the (13/10) active space are presented in Figure 2; the is found to be 36.5 

kcal/mol with respect to "^F Fe"^ (within the experimental range). The equilibrium Fe - CO 

distance is 1.75 A. Unfortunately, this (13/10) FES has a discontinuity near the 

MC-QDPT2 minimum, making the geometry suspect. Similar behavior is found using the 

multi-reference CI wavefunction. This discontinuity is discussed in detail in Appendix A. 

Since the largest natural orbital occupation number in the virtual space of the 

state is less than 0.1, it is reasonable to use single-reference CCSD(T) for the ground 

state.^^-^^-^^ Thus, although this method does have a lower quality zeroth-order 

wavefunction (ROHF) than MC-QDPT2 (MCSCF), the final results should be accurate. 

There are no unusual features in the CCSD(T) PES as shown in Figure 2. By fitting the 

points on the CCSD(T) PES, the with respect to "^F Fe"^ is found to be 35.0 kcal/mol 

with an equilibrium Fe - CO distance of 1.91 A and the C - O distance fixed at 1.1283 A. 

This Dg is in good agreement with the experimental results and close to the MC-QDPT2 D^, 

despite the problems encountered with that method. 

The geometry of the state was optimized at the CCSD(T) level of theory. The 

molecule was not assumed to be linear, although all attempts at bending the FeCO"^ 

increased the energy at the MCSCF, MC-QDPT2, and CCSD(T) levels of theory. One 

cannot assume that excited electronic states are linear, particularly since bent excited and 
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ground states are not uncommon for third row metal carbonyls.^^ The nninimum energy 

CCSD(T) geometry is with a Fe"^ - CO distance of 1.905 A and a CO bond distance of 

1.133 A. The CO bond did not relax significantly during interaction with Fe"^, because 

there is little charge transfer into the CO bond region. The CCSD(T) for dissociation of 

FeCO"^ to "^F Fe"*" is 35.1 kcal/mol. Note that only 0.1 kcal/mol is gained by allowing 

the CO bond length to relax. Based on the experimental quartet-sextet splitting of 5.35 

kcal/mol, the CCSD(T) for dissociation of "^2" FeCO"^ to Fe"^ should be 29.7 

kcal/mol. 

A numerical CCSD(T) hessian was calculated for the "^2" state. A double 

differences approach was used to minimize the possibility of numerical error (see Appendix 

B). The frequencies are not scaled, because CCSD(T) should give high quality results. 

The frequencies and associated intensities are compared with experiment and previously 

calculated spectra in Table 3. Intensities are based on the ROHF dipole derivative tensor 

and the CCSD(T) hessian. The CCSD(T) predicted CO stretch is smaller than the MP2 and 

B3LYP frequencies. If the experimental values for FeCO* and FeCO are a valid guide, then 

the CCSD(T) frequencies are not unreasonable. A vibrational analysis of the normal modes 

leads to a zero-point energy (ZPE) of 4.13 kcal/mol. The CO molecule has a ZPE of 3.18 

kcal/mol, calculated using closed-shell CCSD(T) with ACESn.®^ This results in a net ZPE 

correction of 0.95 kcal/mol for the FeCO"^ complex. Therefore, the Dg for dissociation to 

'^F Fe"^ is 34.2 kcal/mol. The Dq for dissociation to Fe"^ is 28.8 kcal/mol, at the low end 

of the experimental range presented in Section I. 
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IVB. Excited states. 

The ^A, ^n, and states were each separately optimized. Degenerate states 

were state averaged (S A-MCSCF) over both components to preserve orbital and hence state 

degeneracy. MC-QDPT2 was applied as a perturbation to add dynamical correlation to 

obtain reliable energetics and geometries, with two roots included in the treatment when the 

state was degenerate. The (13/11) MCSCF active space presented in Section II was used 

for the ^A and states. 

When a (13/11) active space is used for the "^A state, the virtual 4s orbital becomes a 

CO virtual orbital as the complex dissociates, resulting in improper energetics, similarly to 

the "^iT state in Section IVA. Thus, this CO orbital was removed from the "^A MCSCF 

active space, yielding a (13/10) active space. This removal does not reduce the effective 

size of the active space, because neither this orbital nor the 4s is significantly populated in 

the quartet states. For Fe"^ ion, removing the 4s orbital raises the MCSCF energy 0.8 

kcal/mol, and lowers the MC-QDPT2 energy 0.04 kcal/mol. 

For the and the "^A states, the 3d(T orbital should be doubly occupied in all 

configurations due to spatial and spin symmetry. Therefore, the MCSCF active space for 

the and the '^A states was reduced by one orbital to force the 3dCT orbital to be doubly 

occupied in all configurations. This yields (11/IO) and (11/9) active spaces, respectively, 

for the two states. This reduction does not reduce the effective size of the active space 

relative to the other states, because removing an orbital that is doubly occupied in all 

configurations does not shrink the effective active space. These reduced, but properly 

dissociating, active spaces are then used to calculate MCSCF and MC-QDPT2 energies for 

the and the '^A states. The energies of the '*A (11/9), (11/10), ^IT (13/11), and ^A 
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(13/11) states are presented as a function of the Fe - C distance in Figures 3 and 4 for 

MCSCF and MC-QDPT2, respectively. At the higher level of theory, the potential energy 

minimum of the "^A state is well below that of the others and has a shorter Fe - C 

equilibrium distance. 

Since the "^11 and states could not be individually optimized, an additional set of 

SA-MCSCF calculations were performed in which all sextet states and all quartet states 

were state-averaged (separately for each multiplicity) to obtain energies for all 12 states with 

the (13/11) active space. The results of these calculations are shown in Figures 5 and 6, for 

MCSCF and MC-QDPT2 respectively. These calculations cannot be used directly to obtain 

Dg values or geometries, because the state averaging gives geometries and energies that 

depend on all the states. The curves in Fig. 6 do suggest that the and states should 

lie between the and states. Therefore the ranges that the and equilibrium 

distances must fall into are known for "^FT and even if exact values are not. All states 

are found to be bound in all of the calculations. Therefore even if the FeCO"^ complex is in 

a low lying excited state when it initially forms from Fe"^ and CO, it will most likely be a 

bound state. 

Dissociation energies for FeCO"^ excited states relative to the ground state were 

calculated by assuming a fixed CO distance and a linear FeCO"^ at the MC-QDPT2 level. 

The properly dissociating active spaces presented above in Fig. 4 were used. These results 

along with the corresponding Fe"^ - CO equilibrium distances are presented in Table 4. As 

the equilibrium distance increases, the calculated decreases, as one would expect. 

MCSCF NOON are presented for all states at the MC-QDPT2 equilibrium 

geometries in Table 5. For states with active spaces smaller than the original (13/11), the 
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orbitals not in the active space are designated in Table 5 as integer NOON with no trailing 

zeros. The quartet states are found to have an empty Fe 4s orbital while the sextet states 

have a singly occupied Fe 4s orbital. This difference allows the quartet FeCO"^ states to 

more readily accept electron density from other molecules. This explains the experimentally 

observed greater reactivity of FeCO"^ versus Fe"^. All of the quartet states are found to be 

lower in energy than all of the sextet states. Therefore, the lowest excited states are likely to 

show this enhanced reactivity. 

Because ^A is the lowest sextet state, a numerical MC-QDPT2 hessian was 

calculated using finite differences. The large basis MP2 scaling factor is 0.94-1.02 

depending on whether one is fitting co, ZPE, AH^jj,(T), l/o), or Syi^(T).^° MC-QDE^2 

should calculate frequencies more accurately than MP2, so a scaling factor of 1.0 was 

assumed. Intensities presented are based on the MCSCF dipole derivative tensor and the 

MC-QDPT2 hessian. These frequencies and intensities are presented in Table 3. The ^A 

FeCO"^ ZPE is 3.44 kcal/mol and the CO ZPE is 3.02 kcal/mol. The net ^A FeCO"^ ZPE is 

0.42 kcal/mol, resulting in a ^A Dq of 12.3 kcal/mol. 

V. Problems with multi-reference perturbation theory 

Careful analysis of the (13/10) PES reveals that a discontinuity is present on the 

MC-QDFT2 surface at 1.560516A. Failures of single-reference M0ller-Plesset have been 

reported in the literature, even for a single Ne atom.^' There are reports of similar problems 

within the multi-reference CASPT2 extension of MP2.^^-^^ The PES of the divergent state 

is illustrated in Figure 7. The energies plotted are total energies with the zero of energy 

defined as MC-QDPT2 separated Fe"^ and CO. The MC-QDPT2 "correction" to the 
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MCSCF energy is positive on one side of the discontinuity and negative on the other side. 

The energy difference between R(Fe - C) = 1.560515A and 1.560516A is 376 Hartree for 

MC-QDPT2 and only 0.0003 kcal/mol for MCSCF. This discontinuity is particularly 

troubling because such problems are usually expected to occur in excited state calculations. 

The MC-QDPT2 PES is smooth elsewhere, so the discontinuity is localized. Fortunately, 

the discontinuity is not near the minimum energy point or dissociation, so predicted 

properties are not corrupted. 

The choice of perturbation theory does effect the energies calculated; M0ller-Plesset 

(MP) and Epstein-Nesbet (EN) partition differently and achieve perturbation expansions 

that behave differently.''^-^^ The MC-QDPT2 calculation is performed on the canonicalized 

Fock orbitals, because perturbation theory requires orbital energies. Canonicalization is a 

rotation within the active space, so the MCSCF wavefunction is unchanged. For a 

perturbation expansion to be valid, the zeroth—order wavefunction must be a close 

approximation to the exact wavefunction H'. In the single-state case of "^S", the weight of 

the reference function in the First-order wavefunction is defined by Eq. (1): 

(f" I -y") 

where 4^^ is the first-order correction to the wavefunction and 

Therefore, is the first-order wavefunction. ^ and 4^^ are orthogonal and is 

normalized, so Eq. (1) simplifies with a little mathematical manipulation to Eq. (2). 

W= ! 
1 + ( t ' | > F ' )  < 2 )  

The weight W is nearly 0% at the discontinuity. Thus, this wavefunction is a truly 

divergent case at second-order. Several values of W are plotted in Figure 7. The weight is 
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> 89% from 1.7 A to dissociation and >87% for R(Fe - C)<1.4 A. Clearly, even though 

the perturbation expansion is failing for the PES, the MC-QDPT2 method is 

surprisingly robust, giving reasonable energies for values of W as small as 25%. 

The MCSCF wavefunction was examined in an effort to obtain some theoretical 

insight. When orbitals cross, the nature of a state can shift suddenly. The number of 

degenerate molecular orbitals was not different at the discontinuity, so an orbital crossing 

(including virtuals) was not causing the divergence. MCSCF NOON provide insight into 

the multi-reference nature of a wavefunction; however the NOON are smoothly varying in 

the region of the discontinuity. The largest variance anywhere on the PES from 

single-reference values of 0, 1, and 2 is only 0.1598, and this is at the unbound geometry. 

The gap between the highest energy MCSCF active orbital and the lowest non-active 

virtual orbital is 62 kcal/mol. Thus, this divergence was not caused by a low lying orbital 

that should have been included in the MCSCF active space. Using a full CI within the 

MCSCF active space, the next highest state is found to be 27.9 kcal/mol higher. Therefore 

a low lying excited state is also not the underlying cause. A variational second-order 

approach was utilized to further examine the validity of the underlying MCSCF 

wavefunction. An internally contracted multi-reference second-order CI^^-^^(SOCI) 

produces energies that are reasonable and smooth in the region of the divergence. This 

suggests that the origin of the MC-QDPT2 divergence does not lie in the MCSCF orbitals, 

but rather within the perturbation expansion itself. 

MC-QDPT2 divergences can be artificially avoided. One way to avoid the 

divergence is to change the reference function. A logical choice is to replace the canonical 

Fock orbitals with the natural orbitals.^^ These orbitals diagonalize the first-order density 
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matrix rather than the generalized Fock matrix. The MC-QDPT2 energy is not invariant 

with respect to orbital rotations within the active space, unlike the FORS-MCSCF energy. 

Using natural orbitals results in different orbital energies, and the choice of orbital energies 

affects convergence of the perturbation expansion.'^ The validity of such a substitution is 

not known, particularly since orbital energies are not as well-defined for natural orbitals. A 

CSF selection scheme could be utilized, in which the CSFs that contribute little to the 

MCSCF wavefunction are not used in the perturbation step. However, this is an 

arbitrary restriction on the MC-QDPT2 calculation, and this restriction might introduce 

problems of its own. A chemically important CSF might be left out of the MC-QDPT2 

calculation, resulting in spurious results. A third approach is to change the active spaces. 

Several attempts to vary the MCSCF and MC-QDPT2 active spaces were undertaken and 

although the divergence shifted to other distances, it usually did not disappear. These three 

modifications have the downside of changing the nature of the perturbation method, and 

therefore all calculations would have to be done using these modifications with no guarantee 

of not introducing another divergence or other problem. 

The cause of these divergences may be understood by examining mathematics of 

expansions. The Hamiltonian is expanded in the space of perturbation parameter X about 

X=0 and evaluated at X=1. In the case of MC-QDPT, A.=0 corresponds to the MCSCF 

reference wavefunction and X=1 corresponds to the MC-QDPT wavefunction. As X goes 

from 0 to 1, the correlation is turned on. If the perturbation expansion converges, the 

MC-QDPT wavefunction is the exact wavefunction. MC-QDPT2 truncates the expansion 

at the second-order terms. Singularities can appear within the X space. The singularity 

nearest to X=0 limits the radius of convergence. The expansion is valid for all A. that are 
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closer to X=0 than this singularity. For >.'s outside the radius of convergence, it is possible 

for the perturbation series to converge, but often to the wrong number.^®' This problem is 

not limited to perturbation expansions; divergences limit the usefulness of all expansions, 

such as Taylor series.'®^ Singularities are not limited to real values of X and therefore 

predicting or interpreting these problems is difficult. 

VI. Conclusions 

Fe"^ and its complexes such as FeCO"^ are interesting due to their chemical reactivity 

as catalysts. CO is of particular interest, because it is especially effective in stabilizing 

transition metals. The addition of CO to Fe"^ changes the reactivity significantly, because the 

ground state changes from a sextet to a quartet upon formation of the FeCO"^ complex. This 

change in spin results from a change in the 4s orbital occupation from one to zero. The 

three low lying excited states are also quartets, therefore this enhanced reactivity is probably 

present these lowest excited states. Results from a careful study reveal that uncorrected 

wavefunctions such as MCSCF fail to properly handle this shift from sextet to quartet. 

MCSCF predicts that the sextet is always lower than the quartet in energy. Dynamical 

correlation is found to be necessary to achieve proper energetics. In the present work, 

dynamic correlation is obtained with both MC-QDET2 and single-reference ROHF based 

CCSD(T). These two methods predict dissociation energies for the ground state that 

are comparable to the experimental values (Do=28.8-37.0 kcal/mol). With the addition of 

zero-point corrections, the CCSD(T) predicted Dq is found to be 28.8 kcal/mol. The 

MC-QDPT2 Dg is found to be 32.3 kcal/mol. The lowest lying sextet state, ^A, is predicted 

by MC-QDPT2 to have a Dq of 12.3 kcal/mol. Therefore, FeCO"^ gains 16.5 kcal/mol in 
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energy when it changes spin states. The and *1.' states can be differentiated 

experimentally by their IR spectra. The CO stretch frequencies for the and are very 

similar, but the intensity is very small. The Fe - C stretch frequencies differ by 229 

cm"'. In both states the linear bend has the smallest IR intensity. During the analysis of the 

FeCO"^ system, difficulties at several levels of theory were discovered and analyzed. 

Appendix A. A MCSCF discontinuity 

The (13/10) MCSCF curve has a discontinuity, which is presented in Figure 

Al. This jump is caused by a sudden change in the CO n* NOON from 0.09 to 0.06. This 

change causes a change in the shape in the MCSCF curve and a break in the MC-QDPT2 

curve. The NOON change occurs near the MC-QDPT2 minimum, so optimizing the 

geometry is not possible. This bump was investigated with SOCI based on the MCSCF 

referenceusing MOLPRO. This variational method gives a similarly discontinuous 

PES. This means that the underlying MCSCF wavefunction is pathological or incorrect; 

therefore, this is not a MC-QDPT2 divergence as discussed in Section V. A full CI within 

the FORS space was done, and no low lying states were found on either side of the split, 

and none of the lowest states were states. Removal of the n* orbital from the MCSCF 

active space solved the problem; this solution removes all virtual orbitals from the MCSCF 

active space, leaving a predominantly single-reference wavefunction. An effort to 

incrementally improve the active space by moving core orbitals into the active space failed to 

remove the discontinuity. 
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Appendix B. The calculation of a hessian using a fully numerical approach. 

Because FeCO"^ is a small linear molecule, the hessian is much simpler to calculate in 

internal coordinates. The two bending terms are degenerate and therefore only one must be 

calculated. Because E(0) is symmetrical about the linear bend 0, (0E/30)g_jgo<. vanishes. 

Therefore (3-E/3S30)g_[gQo must also vanish, where S is a bond stretch. Therefore in 

linear FeCO"^, the bend-stretch cross-terms vanish. The two stretches (FeC and CO) are 

not independent, so two pure terms and two equal cross-terms must be calculated. S,, 

So=distances and L, K=offset are used in the derivation. Offsets of 0.02A, 0.01 A, 0.005A 

and r, 2°, 3°, 4°, 5°, 6° were averaged to reduce the possibility of numerical error. 

The stretch cross-term is: 

a'E(S,,S,) 

3S, 3S-, 
[E(L,L) + E( - L, - L) ] - [E(L, - L) + E( - L,L) ] 

S|=S,=0 4 L - ( C l )  

Stretch terms, for which S,=S^, are: 

a-E(S ) 

dS dS 1 I s , = o  

^[E(K) + E(-K)]-[2E(0)] withK = ^L 
(C2) 

Bending terms, for which E(0)=E(-0), are: 

a'E(0) 

3030 0 = 0  

[2E(K)]-[2E(0)] 
(C3) 

The resulting hessian is presented in Table Bl.'®^ 
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Table I. MCSCF NOON for Fe+ with a TZVP basis set. 

4F 

Fe 4s 1.000 0.003 

Fe 3d 1.200 1.399 

Table 2. Fe+ relative energies with a TZVP basis set. 

State Averaged "^F - Splitting Error 

Experiment 5.35 kcal/mol 0.00 kcal/mol 

MCSCF 38.5 kcal/mol 33.15 kcal/mol 

MCQDPT2 3.9 kcal/mol -1.42 kcal/mol 

MR-SOCI 12.6 kcal/mol 7.29 kcal/mol 

MCSCF (g function added) 38.6 kcal/mol 33.24 kcal/mol 

MCQDPT2 (g function added) 2.1 kcal/mol -3.24 kcal/mol 

MR-SOCI (g function added) 11.6 kcal/mol 6.24 kcal/mol 

Single-reference CCSD(T) 10.0 kcal/mol 4.64 kcal/mol 
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Table 3. IR frequencies (cm ') and intensities (D2/(amu-A-)) for FeCO+ 

FeCO- FeCO FeCO+ FeCO+ FeCO+ FeCO+ 
exp. exp. exp. MP2 B3LYP CCSD(T) 

FeCO+ 
MC-QDPT2 

Fe-C stretch 565±10h 530±10h 
740a 

C-O stretch 1980" 1950±10h 
1815a 

linear bend 230±40'' 330±50'' 

405C 423<-' 435 (2.79) 206 (1.04) 

2153^^ 2225*^^ 1830 (5.06) 1857 (0.066) 

321'-- 319^- 313 (small) 172 (0.156) 

''P.C. Engelking and W.C. Lineberger, J. Am. Chem. Soc. 101,1979, 5569. 

''P.W. Villalta and D.G. Leopold, / Chem. Phys. 98, 1993, 7730. 

A. Ricca and C.W. Bauschlicher, J. Phy.s. Chem. 98, 1994, 12899. 
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Table 4. MC-QDPT2 equilibrium distances and dissociation energies for FeCO- relative to 
6D Fe+ and CO 

Fe - CO distance (A) Dg (kcal/mol) 

CCSD(T) 1.91 29.7 

(13/11) 1.93 22.7 

(13/10) 1.75 32.3 

(11/9) 2.1 17.5 

6A (13/11) 2.5 12.7 

m (13/11) 2.5 11.9 

65:+ (11/10) 2.7 8.1 
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Table 5. MCSCF NOON for FeCO+ with a TZVP basis set. 

4^ 6^ 6j-[ 6^^+ 

^ 0.083 0.059 0.059 0.059 0.059 

Pe 4s(j 0 0 1.000 1.000 1.000 

Fe 3d5 '028 1.500 1.500 1.000 1.000 

Fe 3d7i 1-^31 1.000 1.000 1.500 1.000 

Fe 3do •004 2 1.000 1.000 2 

CO TT 1-963 1.945 1.945 1.956 1.946 

rn rr 1.986 1.981 1.991 1.990 1.990 

Table Bl. Fully numerical ^2" hessian in inlemal coordinates 

FeC stretch CO stretch FeCO bend FeCO bend 

FeC stretch 1.239 h/bohr^ 0.0316 h/bohr2 0.0000 0.0000 

CO stretch 0.0316 h/bohr^ 0.0943 h/bohr^ 0.0000 0.0000 

FeCO linear bend 0.0000 0.0000 0.0604 h/radian- 0.0000 

FeCO linear bend 0.0000 0.0000 0.0000 0.0604 h/radian^ 
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Figure 1; ''X" FeCO^ energy witli a TZVP basis set and (13/11) active space 
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CHAPTER 6: GENERAL CONCLUSIONS 

Because chapters 1 through 5 each have a conclusion of their own, only general 

conclusions about various methods of calculating electron correlation are included in this 

chapter. 

Chapters 2 through 4 provide insight into the density functional theory G^FT) 

method of obtaining correlation energy. DFT is computationally less demanding than other 

methods of obtaining correlation, and therefore gaining popularity. The integrals that arise 

are shown to be difficult to evaluate. The standard approach has been to use numerical 

integration. An innovative grid-free approach to evaluation of the integrals that relies on the 

resolution of the identity is developed in this work. The resolution of the identity 

(especially for gradient corrected functionals and energy gradient calculations) requires a 

more accurate basis set than does the wavefunction. The use of such large basis sets results 

in the calculation of a large number of two-electron integrals that are not otherwise needed. 

It is found that with a large enough basis set the resolution of the identity does converge to 

an accurate answer. A more efficient approach that involves augmenting the atomic basis 

set with auxiliary functions only during the DFT part of the calculation is presented. 

Unfortunately, the vast knowledge base available for dealing with wavefunction basis set 

completeness was found to be inadequate for addressing this issue, particularly for gradient 

corrected functionals. Therefore, an even tempered basis set is used to allow for the easy 

and systematic enlargement of the auxiliary basis set. Because the basis set is even 

tempered there is no built in bias towards any particular distribution of exponents. By using 

the Dunning basis sets as a guide for what the range of exponents should be, an effective 

auxiliary basis set is presented. Results for several systems are presented, and it is found 
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that by augmenting the basis sets with auxiHary functions in a logical manner, the 

inadequacies of the atomic basis set are largely overcome. 

The derivation of the grid-free method is presented in detail. Several different 

approaches to calculating the gradient of the density v\ ithin the grid-free DFT ansatz 

proposed by AZ are presented. Several approaches suggested by others are shown to be 

inherently unstable, because the function n^ is not well-behaved and therefore the RI 

cannot be applied reliably. Application of the RI directly to y-=(Vn/n"*^)- provides an 

inconsistent result. The eigenvalues of y- were found to sum to zero, while the y- matrix is 

clearly positive definite. The auxiliary basis sets cannot solve this problem, because it is 

caused by an inappropriate application of the resolution of the identity. On the other hand, 

applying the RI to ±y=Vn/n'^ and then squaring the result to get y", results in all positive 

eigenvalues. Therefore this method for evaluating the dimensionless density gradient is 

used throughout this work. The next step in this area is to extend the approach to more 

functionals and to extend the auxiliary basis sets to additional atoms. Both of these 

advances can be done using the straightforward methods presented in this thesis. 

Chapter 5 is an investigation of the low lying Fe"^ and FeCO"^ states at several levels 

of theory. Fe"^ and its complexes such FeCO"^ are interesting due to their chemical reactivity 

as catalysts. CO is of particular interest, because it is particularly effective in stabilizing 

transition metals. The addition of CO to Fe"^ changes the reactivity significantly, because the 

ground state changes from a sextet to a quartet upon formation of the FeCO complex. 

This change in spin results from a change in the 4s orbital occupation from one to zero. 

The three low lying excited states are also quartets, therefore this enhanced reactivity 

probably is also present in the lowest excited states. Results from a careful study reveal that 
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uncorrelated wavefunctions such as MCSCF fail to properly handle this shift from sextet to 

quartet. MCSCF predicts the Fe"^ quartet-sextet splitting to be 33 kcal/mol larger than 

experiment; MC-QDPT2 adds dynamic correlation to predict the splitting within 1.4 

kcal/mol of experiment. The FeCO"^ complex also requires correlation, with MC-QDPT2 

correctly predicting as the ground state, while MCSCF predicts a sextet ground state. 

The multi-reference wavefunctions allows the calculation of results for excited states. 

Because ground state FeCO"^ is found to be mostly single-reference, CCSD(T) is 

used to obtain the Dq of 28.8 kcal/mol (within the experimental range). The quartet's empty 

4s orbital provides an explanation of the increased reactivity of Fe"^, upon interaction with 

CO. The lowest lying sextet state, ̂ A, is predicted by MC-QDPT2 to have a Dq of 12.3 

kcal/mol. Therefore, FeCO"^ gains 16.5 kcal/mol in energy when it changes spin states. 

The and states can be differentiated experimentally by their IR spectra. The CO 

stretch frequencies for the ^A and are very similar, but the ^A intensity is very small. 

The Fe - C stretch frequencies differ by 229 cm"'. In both states the linear bend has the 

smallest IR intensity. During the analysis of the FeCO"^ system, difficulties at several levels 

of theory were discovered and analyzed. Once MC-QDPT2 natural orbitals become 

available within GAMESS, further investigation of these difficulties should be undertaken. 

The knowledge gained from studying FeCO"^ could also be extended to other Fe systems. 

DFT is compared in several examples to Hartree-Fock and experiment in Chapter 2. 

DFT in most cases provides better agreement with experiment. In Chapter 5 both ROHF 

and MCSCF are found to be inadequate to handle the FeCO"^ system. By adding electron 

correlation with CCSD(T) to ROHF and MC-QDPT2 to MCSCF, results that reproduce 
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experimental results are obtained. Correlation, whether from DFT, perturbation theory, or a 

cluster expansion, is found to be necessary throughout the work presented in this thesis. 
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